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1 INTRODUCTION

Lawrence Berkeley National Lab is developing a programming sys-
tem to support HPC application development using the Partitioned
Global Address Space (PGAS) model. This work includes two major
components: UPC++ (a C++ template library) and GASNet-EX (a
portable, high-performance communication library). This poster
describes recent advances in GASNet-EX to efficiently implement
Remote Memory Access (RMA) operations to and from memory
on accelerator devices such as GPUs. Performance is illustrated
via benchmark results from UPC++ and the Legion programming
system, both using GASNet-EX as their communications library.

2 BACKGROUND

GASNet-EX [5, 13] is a lightweight communications middleware
layer designed to support exascale clients, and is implemented
over the native APIs of many networks, including all of those in
use at the HPC centers of the U. S. Department of Energy’s Office
of Science [9]. It features one-sided communication via Remote
Memory Access (RMA), remote procedure calls via Active Messages
(AMs), remote atomic operations, and non-blocking collectives.

GASNet-EX is an evolution of GASNet-1 [4] and includes a
backwards-compatibility layer to enable incremental migration of
current GASNet-1 client software. Compared to GASNet-1, GASNet-
EX provides enhancements needed for modern asynchronous PGAS
models including adjusted interfaces for improved scalability, re-
duced CPU and memory overheads, and improved support for ag-
gressive multi-threading [14]. GASNet has many important clients,
including: UPC++ [21], the Legion programming system [3], HPE’s
Chapel language [7], the OpenSHMEM reference implementation [20],
the Omni Xcalable Compiler [18], and many UPC [8, 15, 16] and
CAF/Fortran [10-12] compilers. Of these, UPC++, Legion, Chapel
and the Berkeley UPC Runtime have been updated to become
GASNet-EX clients. Some of these clients are informing the di-
rection of GASNet-EX development: features critical to UPC++ are
being co-designed, and the GASNet-EX design is influenced by
input from the Legion and Chapel teams.

Some API enhancements made in GASNet-EX (and detailed
in [5]) include: endpoint naming using (team, rank) (for improved
composability), “immediate mode” injection (to avoid stalls due to
backpressure), explicit handling of local-completion (for improved
buffer lifetime), “Negotiated-Payload” AM (to reduce buffer copying
between layers), atomic operations in distributed memory (imple-
mented using NIC offload where available), non-contiguous point-
to-point RMA APIs, non-blocking collectives, multiple endpoints
and segments, and support for communication to and from device
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memory (such as in a GPU). This poster describes this last item,
support for communication involving device memory, which is
known as "Memory Kinds" in GASNet-EX.

3 MEMORY KINDS

In GASNet-1, each process had a single communications endpoint
with an optional remote-access memory segment established at
initialization. Recent API enhancements, introduced in GASNet-EX
in late 2020, add the capability for a GASNet-EX client to create
multiple endpoints, each with an optional remote-access memory
segment. Furthermore, this recent work introduces the concept of
a memory kind which is an abstraction of memories with different
properties and mechanisms for access!.

Use of memory kinds by a client informs GASNet-EX that a
given segment is in the memory of device of a given type, which
ensures that appropriate access methods are used for communi-
cation. The current GASNet-EX release includes memory kinds
support for Mellanox network hardware with GPUs from Nvidia
and AMD?. Such a pairing of network and GPU can utilize the tech-
nology known as “GPUDirect RDMA” (GDR) to enable the network
adapter to directly access the GPU memory (such as for RMA puts
and gets) without the need to use the CPU or host memory to stage
the transfer through any intermediate buffers. This zero-copy capa-
bility yields significant acceleration of eligible transfers. The poster
describes these API extensions and evaluates the performance ben-
efit, relative both to mechanisms used prior to memory kinds and
to CUDA-enabled MPI (also using GDR).

4 BENCHMARK HIGHLIGHTS

To evaluate the performance of the GASNet-EX Memory Kinds
implementation, the poster presents results of multiple microbench-
marks and one application kernel. This section presents some high-
lights selected from among those results.

4.1 UPC++

UPC++ [1, 2, 6] is a C++ library developed by the same team as
GASNet-EX to provide high-level productivity abstractions appro-
priate for PGAS applications programming such as: remote proce-
dure call, locality-aware APIs for user-defined distributed objects,
and robust support for asynchronous execution to hide commu-
nication costs. UPC++ implements one-sided communication as a
thin wrapper over GASNet-EX, delivering efficient performance.
UPC++ has its own “memory kinds” abstraction, which includes
a global pointer class that enables the upcxx: : copy function to
express transfers between any combination of local and remote

!For instance, it is not possible in general to use memcpy () to access device memory
2Support for other network and GPU vendors is planned as future work.
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shared memory whether residing in host or device memory. The
specification and implementation of memory kinds in UPC++ pre-
ceded the development of the corresponding support in GASNet-EX.
Older UPC++ releases staged device memory transfers through host
memory, whereas more recent releases utilize GASNet-EX memory
kinds. Among other results shown on the poster, Fig. 1 shows the
bandwidth of upcxx: : copy for one particular transfer at various
sizes. The data was collected on OLCF’s Summit [19] supercom-
puter and includes series for UPC++ with both the older implemen-
tation of memory kinds that staged through host memory and the
new zero-copy GDR implementation, as well as an equivalent MPI
benchmark using IBM Spectrum MPIL The results demonstrate that
GASNet-EX memory kinds enable substantial improvement in the
performance of upcxx: : copy, taking it from substantially under-
performing relative to MPI, to delivering comparable or superior
performance.
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Figure 1: Performance comparison for GPU to host memory
transfers in UPC++/GASNet-EX and MPI

4.2 Legion

The authors of Legion [3] characterize it as “a data-centric pro-
gramming model for writing high-performance applications for
distributed heterogeneous architectures” [17]. With its focus on
heterogeneous systems, communication targeting GPU memory is
a key part of Legion’s Realm runtime system, making GASNet-EX
Memory Kinds an important feature.

Legion version 20.12.0 retains its GASNet-1 backend while intro-
ducing a new communications backend utilizing the GASNet-EX
APIs. Where the former explicitly stages GPU memory transfers
through the host memory segment, the latter uses a GPU memory
segment to enable RMA operations which target GPU memory
without any staging. Among additional details given on the poster,
Fig. 2 illustrates the performance improvement observed by switch-
ing from the GASNet-1 to GASNet-EX backend using the same
GASNet library release®. These results show up to a 78% bandwidth
improvement for transfers between a local and remote GPU.

3This is possible because GASNet-EX retains API compatibility with GASNet-1.
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Realm "memspeed" Benchmark on DGX-1: Large Copy Bandwidth
GASNet 2020.11.0 release and two Realm implementations
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Figure 2: Legion memspeed microbenchmark “large copy band-
width” performance for four different transfer patterns in-
volving local and remote host and GPU buffers.

4.3 Kokkos Heat Conduction Example

The third benchmarking study shown on the poster is a Kokkos tu-
torial example, which solves the heat equation in three-dimensions
using GPUs for the computation. This study compares performance
of the original MPI example and a port to UPC++, and finds the
latter performs as well or better on a wide range of problem sizes.
Of particular interest is the finding, illustrated in Fig. 3, that the
per-timestep latency for the UPC++ version is very uniform in
contrast to a very high variability for MPL
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Figure 3: Histogram of latency to complete two time steps
(sliding window) of the UPC++/GASNet-EX and MPI heat
conduction simulations for two representative problem sizes.
A dotted vertical line marks the median of each histogram.

5 CONCLUSIONS

GASNet-EX leverages hardware support to portably and efficiently
implement Active Messages and Remote Memory Access (RMA).
The recent addition of support for offloaded communication to and
from GPU memory helps to improve and extend the role of PGAS
programming models on modern heterogeneous systems.
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This poster features data from multiple systems and benchmarks. This document provides the
available/relevant requested information for each set of experiments plotted on the poster. Due to
publication deadlines, it was not possible to collect data for all experiments using the most recent
software versions.

Panel "GASNet-EX Host Memory RMA Performance versus MPI RMA and
Isend/Irecv"

Because this panel is used to establish the baseline/background for the new work, the majority of its
plots are reproduced with permission from our prior publication at LCPC'18
(https://doi.org/10.25344/S4QP4W). Section 3 of that publication provides information on the
platforms used and benchmarks run.

The results for Summit (one group of bars in the latency plot and one entire bandwidth plot) are new,
since the LCPC'18 paper predates public availability of Summit. Details of Summit at the time the
data was collected are as follows, with all other details of the benchmarks run remaining unchanged
from the LCPC'18 paper.

e "Summit" (see https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/)
e Relevant computer node hardware
o IBM Power System AC922 node
o 2x IBM POWER9 CPUs
o 6x NVIDIA Volta V100s
o Mellanox EDR 100G InfiniBand (dual-rail, ConnectX-5 HCAs)
e Relevant software versions
o Red Hat Enterprise Linux Server 7.6
Linux 4.14.0-115.6.1.el7a.ppc64le kernel
IBM XL C/C++ for Linux, Version 16.1.1.3
IBM Spectrum MPI1 10.3.0.0
Intel MPI Microbenchmarks 2019.2

o
o
o
o


https://doi.org/10.25344/S4QP4W
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Panel "UPC++ Microbenchmark Results with GPU Memory"

These results are from runs, on Summit, of "cuda microbenchmark" in the UPC++ distribution and
"osu_get_bw" from the OSU suite of MPI micro-benchmarks.

"Summit" (see https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/)
Relevant compute node hardware
o IBM Power System AC922 node
o 2x I1BM POWER9 CPUs
o 6x NVIDIA Volta V100s
o Mellanox EDR 100G InfiniBand (dual-rail, ConnectX-5 HCAs)
Relevant software versions
o Red Hat Enterprise Linux Server 7.6
Linux 4.14.0-115.6.1.el7a.ppc64le kernel
GNU gcc/g++ compilers, version 6.4.0
IBM Spectrum MPI1 10.3.1.2
UPC++ 2020.11.0
CUDA 10.1.243
o OSU Micro-Benchmarks 5.6.3
Commands used to launch benchmarks on two nodes with 1 process and 1 GPU per node:
jsrun --smpiargs=-gpu -g1 -r1 -p2 ./cuda_microbenchmark -t 100 -w 100 -sg
jsrun --smpiargs=-gpu -g1 -r1 -p2 ./osu_get_bw —-i 100 -d cuda D H

O O O O O

Panel "Legion Microbenchmark Results with GPU Memory"

This panel's figures are the authors' presentation of raw data provided by Sean Treichler of the
Legion development team at Nvidia, who provided only the following information: "All runs performed
on same pair of DGX-1, using only 1 GPU (V100), 1 NIC (CX-6), and 1 NUMA domain per node".
Software versions used include "GASNet-2020.11.0-memory_kinds_prototype" (available from
gasnet.Ibl.gov) and the developer's version of Legion's librealm which preceded their 20.12.0 release.

Panel "UPC++ Application Kernel Performance"

These results are from runs, on Summit, of a Kokkos tutorial example as described on the poster and
its references.

"Summit" (see https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/)
Relevant compute node hardware
o IBM Power System AC922 node
o 2x IBM POWER9 CPUs
o 6x NVIDIA Volta V100s
o Mellanox EDR 100G InfiniBand (dual-rail, ConnectX-5 HCASs)
Relevant software versions
o Red Hat Enterprise Linux Server 7.6
Linux 4.14.0-115.6.1.el7a.ppc64le kernel
GNU gcc/g++ compilers, version 8.1.1
IBM Spectrum MPI1 10.3.1.2
UPC++ 2021.3.0
CUDA 10.1.243
Kokkos 3.4.0

O O O O O O
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utilize Remote Direct Memory Access (RDMA) capabilities in modern network hardware
 No remote CPU involvement required for network adapter to access application memory
« Simple and efficient implementation due to good semantic fit to the PGAS model
* The goal: extend GASNet-EX RMA to memory in devices such as GPUs, in addition to host memory
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