
GASNet-EX Memory Kinds: Support for Device Memory in PGAS
Programming Models (Extended Poster Abstract)

Paul H. Hargrove, Dan Bonachea, Colin A. MacLean, Daniel Waters
Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

pagoda@lbl.gov

1 INTRODUCTION
Lawrence Berkeley National Lab is developing a programming sys-
tem to support HPC application development using the Partitioned
Global Address Space (PGAS) model. This work includes two major
components: UPC++ (a C++ template library) and GASNet-EX (a
portable, high-performance communication library). This poster
describes recent advances in GASNet-EX to e�ciently implement
Remote Memory Access (RMA) operations to and from memory
on accelerator devices such as GPUs. Performance is illustrated
via benchmark results from UPC++ and the Legion programming
system, both using GASNet-EX as their communications library.

2 BACKGROUND
GASNet-EX [5, 13] is a lightweight communications middleware
layer designed to support exascale clients, and is implemented
over the native APIs of many networks, including all of those in
use at the HPC centers of the U. S. Department of Energy’s O�ce
of Science [9]. It features one-sided communication via Remote
Memory Access (RMA), remote procedure calls via Active Messages
(AMs), remote atomic operations, and non-blocking collectives.

GASNet-EX is an evolution of GASNet-1 [4] and includes a
backwards-compatibility layer to enable incremental migration of
current GASNet-1 client software. Compared to GASNet-1, GASNet-
EX provides enhancements needed for modern asynchronous PGAS
models including adjusted interfaces for improved scalability, re-
duced CPU and memory overheads, and improved support for ag-
gressive multi-threading [14]. GASNet has many important clients,
including: UPC++ [21], the Legion programming system [3], HPE’s
Chapel language [7], theOpenSHMEM reference implementation [20],
the Omni Xcalable Compiler [18], and many UPC [8, 15, 16] and
CAF/Fortran [10–12] compilers. Of these, UPC++, Legion, Chapel
and the Berkeley UPC Runtime have been updated to become
GASNet-EX clients. Some of these clients are informing the di-
rection of GASNet-EX development: features critical to UPC++ are
being co-designed, and the GASNet-EX design is in�uenced by
input from the Legion and Chapel teams.

Some API enhancements made in GASNet-EX (and detailed
in [5]) include: endpoint naming using (team,rank) (for improved
composability), “immediate mode” injection (to avoid stalls due to
backpressure), explicit handling of local-completion (for improved
bu�er lifetime), “Negotiated-Payload” AM (to reduce bu�er copying
between layers), atomic operations in distributed memory (imple-
mented using NIC o�oad where available), non-contiguous point-
to-point RMA APIs, non-blocking collectives, multiple endpoints
and segments, and support for communication to and from device

SC21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s).
https://doi.org/10.25344/S4P306

memory (such as in a GPU). This poster describes this last item,
support for communication involving device memory, which is
known as "Memory Kinds" in GASNet-EX.

3 MEMORY KINDS
In GASNet-1, each process had a single communications endpoint
with an optional remote-access memory segment established at
initialization. Recent API enhancements, introduced in GASNet-EX
in late 2020, add the capability for a GASNet-EX client to create
multiple endpoints, each with an optional remote-access memory
segment. Furthermore, this recent work introduces the concept of
a memory kind which is an abstraction of memories with di�erent
properties and mechanisms for access1.

Use of memory kinds by a client informs GASNet-EX that a
given segment is in the memory of device of a given type, which
ensures that appropriate access methods are used for communi-
cation. The current GASNet-EX release includes memory kinds
support for Mellanox network hardware with GPUs from Nvidia
and AMD2. Such a pairing of network and GPU can utilize the tech-
nology known as “GPUDirect RDMA” (GDR) to enable the network
adapter to directly access the GPU memory (such as for RMA puts
and gets) without the need to use the CPU or host memory to stage
the transfer through any intermediate bu�ers. This zero-copy capa-
bility yields signi�cant acceleration of eligible transfers. The poster
describes these API extensions and evaluates the performance ben-
e�t, relative both to mechanisms used prior to memory kinds and
to CUDA-enabled MPI (also using GDR).

4 BENCHMARK HIGHLIGHTS
To evaluate the performance of the GASNet-EX Memory Kinds
implementation, the poster presents results of multiple microbench-
marks and one application kernel. This section presents some high-
lights selected from among those results.

4.1 UPC++
UPC++ [1, 2, 6] is a C++ library developed by the same team as
GASNet-EX to provide high-level productivity abstractions appro-
priate for PGAS applications programming such as: remote proce-
dure call, locality-aware APIs for user-de�ned distributed objects,
and robust support for asynchronous execution to hide commu-
nication costs. UPC++ implements one-sided communication as a
thin wrapper over GASNet-EX, delivering e�cient performance.

UPC++ has its own “memory kinds” abstraction, which includes
a global pointer class that enables the upcxx::copy function to
express transfers between any combination of local and remote

1For instance, it is not possible in general to use memcpy() to access device memory
2Support for other network and GPU vendors is planned as future work.

https://doi.org/10.25344/S4P306

SC21, November 14–19, 2021, St. Louis, MO, USA P. H. Hargrove et al.

shared memory whether residing in host or device memory. The
speci�cation and implementation of memory kinds in UPC++ pre-
ceded the development of the corresponding support in GASNet-EX.
Older UPC++ releases staged device memory transfers through host
memory, whereas more recent releases utilize GASNet-EX memory
kinds. Among other results shown on the poster, Fig. 1 shows the
bandwidth of upcxx::copy for one particular transfer at various
sizes. The data was collected on OLCF’s Summit [19] supercom-
puter and includes series for UPC++ with both the older implemen-
tation of memory kinds that staged through host memory and the
new zero-copy GDR implementation, as well as an equivalent MPI
benchmark using IBM Spectrum MPI. The results demonstrate that
GASNet-EX memory kinds enable substantial improvement in the
performance of upcxx::copy, taking it from substantially under-
performing relative to MPI, to delivering comparable or superior
performance.

Figure 1: Performance comparison for GPU to host memory
transfers in UPC++/GASNet-EX and MPI

4.2 Legion
The authors of Legion [3] characterize it as “a data-centric pro-
gramming model for writing high-performance applications for
distributed heterogeneous architectures” [17]. With its focus on
heterogeneous systems, communication targeting GPU memory is
a key part of Legion’s Realm runtime system, making GASNet-EX
Memory Kinds an important feature.

Legion version 20.12.0 retains its GASNet-1 backend while intro-
ducing a new communications backend utilizing the GASNet-EX
APIs. Where the former explicitly stages GPU memory transfers
through the host memory segment, the latter uses a GPU memory
segment to enable RMA operations which target GPU memory
without any staging. Among additional details given on the poster,
Fig. 2 illustrates the performance improvement observed by switch-
ing from the GASNet-1 to GASNet-EX backend using the same
GASNet library release3. These results show up to a 78% bandwidth
improvement for transfers between a local and remote GPU.

3This is possible because GASNet-EX retains API compatibility with GASNet-1.

Figure 2: Legion memspeedmicrobenchmark “large copy band-
width” performance for four di�erent transfer patterns in-
volving local and remote host and GPU bu�ers.

4.3 Kokkos Heat Conduction Example
The third benchmarking study shown on the poster is a Kokkos tu-
torial example, which solves the heat equation in three-dimensions
using GPUs for the computation. This study compares performance
of the original MPI example and a port to UPC++, and �nds the
latter performs as well or better on a wide range of problem sizes.
Of particular interest is the �nding, illustrated in Fig. 3, that the
per-timestep latency for the UPC++ version is very uniform in
contrast to a very high variability for MPI.

Figure 3: Histogram of latency to complete two time steps
(sliding window) of the UPC++/GASNet-EX and MPI heat
conduction simulations for two representative problem sizes.
A dotted vertical line marks the median of each histogram.

5 CONCLUSIONS
GASNet-EX leverages hardware support to portably and e�ciently
implement Active Messages and Remote Memory Access (RMA).
The recent addition of support for o�oaded communication to and
from GPU memory helps to improve and extend the role of PGAS
programming models on modern heterogeneous systems.

GASNet-EX Memory Kinds SC21, November 14–19, 2021, St. Louis, MO, USA

ACKNOWLEDGMENTS
The authors gratefully acknowledge Sean Treichler of the Legion
development team for collecting the raw data presented in Fig. 2.

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative e�ort of the U.S. Department of En-
ergy O�ce of Science and the National Nuclear Security Adminis-
tration.

This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the O�ce of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

This research used resources of the National Energy Research
Scienti�c Computing Center, a DOE O�ce of Science User Facility
supported by the O�ce of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

We gratefully acknowledge the computing resources provided
and operated by the Joint Laboratory for System Evaluation (JLSE)
at Argonne National Laboratory.

REFERENCES
[1] John Bachan, Scott B. Baden, Dan Bonachea, Max Grossman, Paul H. Hargrove,

Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, and Daniel
Waters. 2021. UPC++ v1.0 Programmer’s Guide, Revision 2021.9.0. Technical Report
LBNL-2001424. Lawrence Berkeley National Laboratory. doi:10.25344/S4SW2T

[2] John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil,
Dan Bonachea, Paul H. Hargrove, and Hadia Ahmed. 2019. UPC++: A High-
Performance Communication Framework for Asynchronous Computation. In
Proceedings of the 33rd IEEE International Parallel & Distributed Processing Sym-
posium (IPDPS). 11 pages. doi:10.25344/S4V88H

[3] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
expressing locality and independence with logical regions. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC ’12). doi:10.1109/SC.2012.71

[4] Dan Bonachea and Paul H. Hargrove. 2017. GASNet Speci�cation, v1.8.1.
Technical Report LBNL-2001064. Lawrence Berkeley National Laboratory.
doi:10.2172/1398512

[5] Dan Bonachea and Paul H. Hargrove. 2018. GASNet-EX: A High-Performance,
Portable Communication Library for Exascale. In Languages and Compilers for
Parallel Computing (LCPC’18). doi:10.25344/S4QP4W

[6] Dan Bonachea and Amir Kamil. 2021. UPC++ v1.0 Speci�cation, Revision
2021.9.0. Technical Report LBNL-2001425. Lawrence Berkeley National Lab-
oratory. doi:10.25344/S4XK53

[7] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007. Parallel
Programmability and the Chapel Language. In International Journal of High
Performance Computing Applications (IJHPCA), Vol. 21. 291–312.

[8] W. Chen, D. Bonachea, J. Duell, P. Husband, C. Iancu, and K. Yelick. 2003. A
Performance Analysis of the Berkeley UPC Compiler. In Proceedings of the 17th
International Conference on Supercomputing (ICS). doi:10.1145/782814.782825

[9] DOE Advanced Scienti�c Computing Research (ASCR). Facilities. https://science.
energy.gov/ascr/facilities.

[10] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. 2004. A Multi-platform Co-Array
Fortran Compiler. In Proc. 13th International Conference on Parallel Architecture
and Compilation Techniques (PACT). doi:10.1109/PACT.2004.1342539

[11] Deepak Eachempati, Hyoung Joon Jun, and Barbara Chapman. 2010. An Open-
source Compiler and Runtime Implementation for Coarray Fortran. In Proceedings
of the Fourth Conference on Partitioned Global Address Space Programming Models
((PGAS’10)). ACM, Article 13, 8 pages. doi:10.1145/2020373.2020386

[12] Alessandro Fanfarillo, Tobias Burnus, Valeria Cardellini, Salvatore Filippone, Dan
Nagle, and Damian Rouson. 2014. OpenCoarrays: Open-source Transport Layers
Supporting Coarray Fortran Compilers. In Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models (PGAS ’14).
ACM, New York, NY, USA, Article 4, 11 pages. doi:10.1145/2676870.2676876

[13] GASNet. home page. https://gasnet.lbl.gov.
[14] Paul H. Hargrove and Dan Bonachea. 2018. GASNet-EX Performance Im-

provements Due to Specialization for the Cray Aries Network. In 2018
IEEE/ACM Parallel Applications Workshop, Alternatives To MPI (PAW-ATM). 23–33.
doi:10.1109/PAW-ATM.2018.00008

[15] Intrepid Technology, Inc. Clang UPC Compiler. https://clangupc.github.io.
[16] Intrepid Technology, Inc. GCC/UPC Compiler. https://www.gccupc.org.
[17] Legion Programming System. home page. http://legion.stanford.edu/.

[18] Hitoshi Murai, Masahiro Nakao, Hidetoshi Iwashita, and Mitsuhisa Sato. 2017.
Preliminary Performance Evaluation of Coarray-based Implementation of Fiber
Miniapp Suite Using XcalableMP PGAS Language. In Proceedings of the Sec-
ond Annual PGAS Applications Workshop (PAW17). ACM, Article 1, 7 pages.
doi:10.1145/3144779.3144780

[19] Oak Ridge National Laboratory Leadership Computing Facility (ORNL/OLCF).
Summit. https://olcf.ornl.gov/olcf-resources/compute-systems/summit/.

[20] Swaroop Pophale, Ramachandra Nanjegowda, Tony Curtis, Barbara Chapman,
Haoqiang Jin, Stephen Poole, and Je�ery Kuehn. 2012. OpenSHMEMPerformance
and Potential: A NPB Experimental Study. In Proceedings of the 6th Conference on
Partitioned Global Address Space Programming Models (PGAS’12). https://www.
osti.gov/biblio/1055092

[21] UPC++. home page. https://upcxx.lbl.gov.

https://doi.org/10.25344/S4SW2T
https://doi.org/10.25344/S4V88H
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.2172/1398512
https://doi.org/10.25344/S4QP4W
https://doi.org/10.25344/S4XK53
https://doi.org/10.1145/782814.782825
https://science.energy.gov/ascr/facilities
https://science.energy.gov/ascr/facilities
https://doi.org/10.1109/PACT.2004.1342539
https://doi.org/10.1145/2020373.2020386
https://doi.org/10.1145/2676870.2676876
https://gasnet.lbl.gov
https://doi.org/10.1109/PAW-ATM.2018.00008
https://clangupc.github.io
https://www.gccupc.org
http://legion.stanford.edu/
https://doi.org/10.1145/3144779.3144780
https://olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.osti.gov/biblio/1055092
https://www.osti.gov/biblio/1055092
https://upcxx.lbl.gov

 ArWifacW DescripWion Appendi[for SC21 posWer:
 "GASNeW-EX Memor\ Kinds: SXpporW for DeYice Memor\

 in PGAS Programming Models"

 PaXl H. HargroYe, Dan Bonachea, Colin A. MacLean, Daniel WaWers
 Applied MaWhemaWics and CompXWaWional Research DiYision,
 LaZrence Berkele\ NaWional LaboraWor\, Berkele\, CA, USA

 pagoda@lbl.goY

 This posWer feaWXres daWa from mXlWiple s\sWems and benchmarks. This docXmenW proYides Whe
 aYailable/releYanW reqXesWed informaWion for each seW of e[perimenWs ploWWed on Whe posWer. DXe Wo
 pXblicaWion deadlines, iW Zas noW possible Wo collecW daWa for all e[perimenWs Xsing Whe mosW recenW
 sofWZare Yersions.

 Panel "GASNeW-EX HosW Memor\ RMA Performance YersXs MPI RMA and
 Isend/IrecY"
 BecaXse Whis panel is Xsed Wo esWablish Whe baseline/backgroXnd for Whe neZ Zork, Whe majoriW\ of iWs
 ploWs are reprodXced ZiWh permission from oXr prior pXblicaWion aW LCPC'18
 (hWWps://doi.org/10.25344/S4QP4W). SecWion 3 of WhaW pXblicaWion proYides informaWion on Whe
 plaWforms Xsed and benchmarks rXn.

 The resXlWs for SXmmiW (one groXp of bars in Whe laWenc\ ploW and one enWire bandZidWh ploW) are neZ,
 since Whe LCPC'18 paper predaWes pXblic aYailabiliW\ of SXmmiW. DeWails of SXmmiW aW Whe Wime Whe
 daWa Zas collecWed are as folloZs, ZiWh all oWher deWails of Whe benchmarks rXn remaining Xnchanged
 from Whe LCPC'18 paper.

 Ɣ "SXmmiW" (see hWWps://ZZZ.olcf.ornl.goY/olcf-resoXrces/compXWe-s\sWems/sXmmiW/)
 Ɣ ReleYanW compXWer node hardZare

 ż IBM PoZer S\sWem AC922 node
 ż 2[IBM POWER9 CPUs
 ż 6[NVIDIA VolWa V100s
 ż Mellano[EDR 100G InfiniBand (dXal-rail, ConnecWX-5 HCAs)

 Ɣ ReleYanW sofWZare Yersions
 ż Red HaW EnWerprise LinX[SerYer 7.6
 ż LinX[4.14.0-115.6.1.el7a.ppc64le kernel
 ż IBM XL C/C++ for LinX[, Version 16.1.1.3
 ż IBM SpecWrXm MPI 10.3.0.0
 ż InWel MPI Microbenchmarks 2019.2

https://doi.org/10.25344/S4QP4W
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

 Panel "UPC++ Microbenchmark ResXlWs ZiWh GPU Memor\"
 These resXlWs are from rXns, on SXmmiW, of " cXda_microbenchmark " in Whe UPC++ disWribXWion and
 " osX_geW_bZ " from Whe OSU sXiWe of MPI micro-benchmarks.

 Ɣ "SXmmiW" (see hWWps://ZZZ.olcf.ornl.goY/olcf-resoXrces/compXWe-s\sWems/sXmmiW/)
 Ɣ ReleYanW compXWe node hardZare

 ż IBM PoZer S\sWem AC922 node
 ż 2[IBM POWER9 CPUs
 ż 6[NVIDIA VolWa V100s
 ż Mellano[EDR 100G InfiniBand (dXal-rail, ConnecWX-5 HCAs)

 Ɣ ReleYanW sofWZare Yersions
 ż Red HaW EnWerprise LinX[SerYer 7.6
 ż LinX[4.14.0-115.6.1.el7a.ppc64le kernel
 ż GNU gcc/g++ compilers, Yersion 6.4.0
 ż IBM SpecWrXm MPI 10.3.1.2
 ż UPC++ 2020.11.0
 ż CUDA 10.1.243
 ż OSU Micro-Benchmarks 5.6.3

 Ɣ Commands Xsed Wo laXnch benchmarks on WZo nodes ZiWh 1 process and 1 GPU per node:
 j.-0n gg.m+ia-g.�gg+0 gg7 g-7 g+8 `�c0dafmic-obenchma-k h/ 766 h2 766 g.g
 j.-0n gg.m+ia-g.�gg+0 gg7 g-7 g+8 `�o.0fge/fb2 hi 766 hd c0da D H

 Panel "Legion Microbenchmark ResXlWs ZiWh GPU Memor\"
 This panel's figXres are Whe aXWhors' presenWaWion of raZ daWa proYided b\ Sean Treichler of Whe
 Legion deYelopmenW Weam aW NYidia, Zho proYided onl\ Whe folloZing informaWion: "All rXns performed
 on same pair of DGX-1, Xsing onl\ 1 GPU (V100), 1 NIC (CX-6), and 1 NUMA domain per node".
 SofWZare Yersions Xsed inclXde "GASNeW-2020.11.0-memor_kinds_proWoW\pe" (aYailable from
 gasneW.lbl.goY) and Whe deYeloper's Yersion of Legion's librealm Zhich preceded Wheir 20.12.0 release.

 Panel "UPC++ ApplicaWion Kernel Performance"
 These resXlWs are from rXns, on SXmmiW, of a Kokkos WXWorial e[ample as described on Whe posWer and
 iWs references.

 Ɣ "SXmmiW" (see hWWps://ZZZ.olcf.ornl.goY/olcf-resoXrces/compXWe-s\sWems/sXmmiW/)
 Ɣ ReleYanW compXWe node hardZare

 ż IBM PoZer S\sWem AC922 node
 ż 2[IBM POWER9 CPUs
 ż 6[NVIDIA VolWa V100s
 ż Mellano[EDR 100G InfiniBand (dXal-rail, ConnecWX-5 HCAs)

 Ɣ ReleYanW sofWZare Yersions
 ż Red HaW EnWerprise LinX[SerYer 7.6
 ż LinX[4.14.0-115.6.1.el7a.ppc64le kernel
 ż GNU gcc/g++ compilers, Yersion 8.1.1
 ż IBM SpecWrXm MPI 10.3.1.2
 ż UPC++ 2021.3.0
 ż CUDA 10.1.243
 ż Kokkos 3.4.0

https://bitbucket.org/berkeleylab/upcxx/src/master/bench/cuda_microbenchmark.cpp
https://ulhpc-tutorials.readthedocs.io/en/latest/parallel/mpi/OSU_MicroBenchmarks/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

© 2021, Lawrence Berkeley National Laboratory
https://doi.org/10.25344/S4P306

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.
This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

GASNet-EX Memory Kinds
• Performance for host memory RMA (see panel above) is largely due GASNet-EX’s ability to efficiently

utilize Remote Direct Memory Access (RDMA) capabilities in modern network hardware
• No remote CPU involvement required for network adapter to access application memory
• Simple and efficient implementation due to good semantic fit to the PGAS model

• The goal: extend GASNet-EX RMA to memory in devices such as GPUs, in addition to host memory
• Challenge 1: RDMA capability for GPU memory is needed for best performance

• Solved by the hardware vendors via GPUDirect RDMA (see upper-right panel)
• Challenge 2: Retaining efficiency in the GASNet-EX implementation

• This is addressed by our design of a new “memory kinds” abstraction in GASNet-EX
• Challenge 3: Design for extensibility to other byte- or block-addressable “memories”

• Our design encompasses such possible kinds as FPGA and storage
• Our solution: extend the concept of the “remote-access segment”

• The arguments to every RMA operation specify a local and remote communications endpoint
• To be valid for RMA operations, an endpoint must have an associated “bound segment”
• NEW:

• A “kind” can be created for each device: e.g. “CUDA device 0”, “HIP device 2”
• Instead of just a single implicit segment, multiple explicit segments are supported
• Creation of a segment names the kind, along with a size and optional address

• This design means every RMA operation knows the device(s) involved from the existing arguments
• Device addresses identified without dynamic queries or interposing on memory management APIs

• Good match to UPC++ and Legion programming models which already track host vs. device memory

High-level Object Model
Team Member (TM)
Team of endpoints, local rank, local EP

Client Object

Endpoint (EP)

Memory Segment
kind (host, device), address, length

AM Handler Table
maps idx to fnptr

(Optional)
Binding

GASNet-EX Memory Kinds: Support for Device Memory in PGAS Programming Models

https://gasnet.lbl.gov

• Three different MPI implementations
• Two distinct network hardware types
• On four systems the performance of GASNet-EX

matches or exceeds that of MPI RMA and
message-passing:
• 8-byte Put latency 6% to 55% better
• 8-byte Get latency 5% to 45% better
• Better flood bandwidth efficiency, typically

saturating at ½ or ¼ the transfer size

For more details see Languages and Compilers for Parallel Computing (LCPC'18).
https://doi.org/10.25344/S4QP4W

GASNet-EX results from v2018.9.0
MPI results from Intel MPI Benchmarks v2018.1

Uni-directional Flood Bandwidth (many-at-a-time)8-Byte RMA Operation Latency (one-at-a-time)

GASNet-EX Host Memory RMA Performance versus MPI RMA and Isend/Irecv

GASNet-EX Background
• GASNet-EX is communications middleware to support exascale clients

• Widely adopted for implementation of Partitioned Global Address Space
(PGAS) programming models

• One-sided communication – Remote Memory Access (RMA)
• Active Messages (AMs) - remote procedure call
• Implemented over native APIs of all networks of interest to DOE

• GASNet-EX is an evolution of GASNet-1 for exascale
• Retains GASNet-1’s wide portability (laptops to supercomputers)
• Focus remains on one-sided RMA and Active Messages
• Reduces CPU and memory overheads
• Improves support for aggressive multi-threading
• Adds support for device memory (GPUs)

GASNet-EX
UPCLegion ChapelUPC++ CAF/Fortran …

EthernetInfiniBand libfabric/OFICray XC MPI …

Exascale Scientific Applications

GASNet-EX Support for GPUDirect RDMA (GDR)
• Memory kinds concept expresses use of device memory in RMA endpoint arguments

• Implementation can easily identify appropriate transfer mechanism, including
hardware-assisted technologies such as GPUDirect RDMA (GDR)

• GASNex-EX supports GDR in recent releases
• Removes host CPU and memory bottlenecks from one-sided transfers

to/from GPU memory, achieving true zero-copy (see diagram at right →)
• Currently supports Nvidia and AMD GPUs; and Mellanox network adapters
• Other accelerators and networks are the subject of future work, including

• Intel GPUs; HPE Slingshot-11 network Image source: https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/

• UPC++ is our C++ productivity layer over GASNet-EX
• Has its own analogous memory kinds concepts
• Uses upcxx::copy() to express RMA between arbitrary shared memory

• Measurements of flood bandwidth of upcxx::copy() on OLCF’s Summit
• Difference between UPC++ releases with and without GASNet-EX memory kinds

shows benefit of GASNet-EX’s new support for GDR
• No longer staging through host memory (true zero-copy)
• Large transfers: 2x better bandwidth
• Small transfers: up to 30x better bandwidth

• Get operations to/from GPU memory now perform comparably to host memory
• Comparisons to MPI-3 RMA in CUDA-enabled IBM Spectrum MPI show UPC++

saturating to peak bandwidth at smaller transfer sizes

UPC++ results were collected using the version of the cuda_benchmark test that appears in the 2020.11.0 release.
MPI results are from osu_get_bw test in a CUDA-enabled build of OSU Micro-Benchmarks 5.6.3.
All tests were run between two nodes of OLCF Summit, over its EDR InfiniBand network.

UPC++ Microbenchmark Results with GPU Memory

U
P

IS
 G

O
O

D

D
O

W
N

 IS
 G

O
O

D

Legion Microbenchmark Results with GPU Memory
• Legion characterizes itself as “a data-centric programming model

for writing high-performance applications for distributed
heterogeneous architectures’’.

• Legion’s Realm runtime provides communication services
• Originally implemented over GASNet-1
• Still works using legacy API support in current GASNet-EX

• Realm recently introduced a new GASNet-EX backend which
embraces EX-specific capabilities
• Leverages immediate, NPAM, and LC handles for AM
• Leverages memory kinds for RMA, gaining GDR support
• Multi-endpoint for RMA to/from additional host memory regions

• Figures at right show some performance benefits of using GDR
• Large GPU transfers: bandwidth now matches host memory
• Small GPU transfers: 2.2x to 3.0x latency improvement

D
O

W
N

 IS
 G

O
O

D

U
P

IS
 G

O
O

D

The authors gratefully acknowledge Sean Treichler of the Legion development team for collecting the data we present above.

U
P

IS
 G

O
O

D

UPC++ Application Kernel Performance
Histogram of execution time for two time steps (sliding

window) on 128 nodes of OLCF Summit, using 6 procs/node
and 1 GPU/proc, for problem sizes 8003 and 64003

(Dashed vertical lines mark the median of each distribution)

• Kokkos1 is a popular on-node programming model providing C++ abstractions for use of multi-core
and GPU-accelerated nodes with a single version of the application source code

• We converted a Kokkos tutorial example2 from use of MPI message passing to UPC++ RMA
• Use of UPC++ memory kinds for device memory management
• Use of upcxx::copy for one-sided RMA data movement and remote notification

• Despite no changes to the computation, we observed unexpected performance differences
• UPC++ RMA delivers better strong scaling (not pictured here) than MPI message passing
• Even when performance is comparable, MPI version’s performance has much larger variance

• This figure shows the relative performance and variance for two problem sizes and fixed resources
• Histograms show the frequency of execution times, using a sliding window over two time steps

to fairly account for MPI Recv and Send matching (this reduces MPI’s measured variance)
• UPC++ runs show lower (faster) median time step latency than the corresponding MPI runs
• UPC++ runs show narrower (lower-variance) distributions than the corresponding MPI runs

• Future work planned to try to understand and eliminate MPI variance, and repeat the comparison
• More complete information will appear in a workshop talk on Friday morning:

D. Waters, C. A. MacLean, D. Bonachea, P. H. Hargrove. "Demonstrating UPC++/Kokkos Interoperability in
a Heat Conduction Simulation (Extended Abstract)", In 2021 IEEE/ACM Parallel Applications Workshop,
Alternatives To MPI+X (PAW-ATM), St. Louis, MO, Nov 2021. 5 pages. https://doi.org/10.25344/S4630V

[1] https://kokkos.org
[2] https://go.lbl.gov/paw21-kokkos-mpi-heat-conduction

UPC++ results use UPC++ v2021.3.0 w/ GPUDirect RDMA
MPI results use CUDA-enabled IBM Spectrum MPI v10.3.1.2

Paul H. Hargrove, Dan Bonachea, Colin A. MacLean, Daniel Waters
Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory

pagoda@lbl.gov

Click Here for
Narration

Video!

https://gasnet.lbl.gov
https://gasnet.lbl.gov
https://upcxx.lbl.gov
https://legion.stanford.edu/
https://legion.stanford.edu/
https://upcxx.lbl.gov
https://doi.org/10.25344/S4QP4W
https://doi.org/10.25344/S4630V
https://doi.org/10.25344/S4P306
https://go.lbl.gov/pagoda
https://doi.org/10.25344/S48W25

	1 Introduction
	2 Background
	3 Memory Kinds
	4 Benchmark Highlights
	4.1 UPC++
	4.2 Legion
	4.3 Kokkos Heat Conduction Example

	5 Conclusions
	Acknowledgments
	References
	Artifact Description Appendix
	Poster

