GASNet-EX Memory Kinds: Support for Device Memory in PGAS
Programming Models (Extended Poster Abstract)

Paul H. Hargrove, Dan Bonachea, Colin A. MacLean, Daniel Waters
Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
pagoda@lbl.gov

1 INTRODUCTION

Lawrence Berkeley National Lab is developing a programming sys-
tem to support HPC application development using the Partitioned
Global Address Space (PGAS) model. This work includes two major
components: UPC++ (a C++ template library) and GASNet-EX (a
portable, high-performance communication library). This poster
describes recent advances in GASNet-EX to efficiently implement
Remote Memory Access (RMA) operations to and from memory
on accelerator devices such as GPUs. Performance is illustrated
via benchmark results from UPC++ and the Legion programming
system, both using GASNet-EX as their communications library.

2 BACKGROUND

GASNet-EX [5, 13] is a lightweight communications middleware
layer designed to support exascale clients, and is implemented
over the native APIs of many networks, including all of those in
use at the HPC centers of the U. S. Department of Energy’s Office
of Science [9]. It features one-sided communication via Remote
Memory Access (RMA), remote procedure calls via Active Messages
(AMs), remote atomic operations, and non-blocking collectives.

GASNet-EX is an evolution of GASNet-1 [4] and includes a
backwards-compatibility layer to enable incremental migration of
current GASNet-1 client software. Compared to GASNet-1, GASNet-
EX provides enhancements needed for modern asynchronous PGAS
models including adjusted interfaces for improved scalability, re-
duced CPU and memory overheads, and improved support for ag-
gressive multi-threading [14]. GASNet has many important clients,
including: UPC++ [21], the Legion programming system [3], HPE’s
Chapel language [7], the OpenSHMEM reference implementation [20],
the Omni Xcalable Compiler [18], and many UPC [8, 15, 16] and
CAF/Fortran [10-12] compilers. Of these, UPC++, Legion, Chapel
and the Berkeley UPC Runtime have been updated to become
GASNet-EX clients. Some of these clients are informing the di-
rection of GASNet-EX development: features critical to UPC++ are
being co-designed, and the GASNet-EX design is influenced by
input from the Legion and Chapel teams.

Some API enhancements made in GASNet-EX (and detailed
in [5]) include: endpoint naming using (team, rank) (for improved
composability), “immediate mode” injection (to avoid stalls due to
backpressure), explicit handling of local-completion (for improved
buffer lifetime), “Negotiated-Payload” AM (to reduce buffer copying
between layers), atomic operations in distributed memory (imple-
mented using NIC offload where available), non-contiguous point-
to-point RMA APIs, non-blocking collectives, multiple endpoints
and segments, and support for communication to and from device

SC21, November 14—19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s).
https://doi.org/10.25344/S4P306

memory (such as in a GPU). This poster describes this last item,
support for communication involving device memory, which is
known as "Memory Kinds" in GASNet-EX.

3 MEMORY KINDS

In GASNet-1, each process had a single communications endpoint
with an optional remote-access memory segment established at
initialization. Recent API enhancements, introduced in GASNet-EX
in late 2020, add the capability for a GASNet-EX client to create
multiple endpoints, each with an optional remote-access memory
segment. Furthermore, this recent work introduces the concept of
a memory kind which is an abstraction of memories with different
properties and mechanisms for access!.

Use of memory kinds by a client informs GASNet-EX that a
given segment is in the memory of device of a given type, which
ensures that appropriate access methods are used for communi-
cation. The current GASNet-EX release includes memory kinds
support for Mellanox network hardware with GPUs from Nvidia
and AMD?. Such a pairing of network and GPU can utilize the tech-
nology known as “GPUDirect RDMA” (GDR) to enable the network
adapter to directly access the GPU memory (such as for RMA puts
and gets) without the need to use the CPU or host memory to stage
the transfer through any intermediate buffers. This zero-copy capa-
bility yields significant acceleration of eligible transfers. The poster
describes these API extensions and evaluates the performance ben-
efit, relative both to mechanisms used prior to memory kinds and
to CUDA-enabled MPI (also using GDR).

4 BENCHMARK HIGHLIGHTS

To evaluate the performance of the GASNet-EX Memory Kinds
implementation, the poster presents results of multiple microbench-
marks and one application kernel. This section presents some high-
lights selected from among those results.

4.1 UPC++

UPC++ [1, 2, 6] is a C++ library developed by the same team as
GASNet-EX to provide high-level productivity abstractions appro-
priate for PGAS applications programming such as: remote proce-
dure call, locality-aware APIs for user-defined distributed objects,
and robust support for asynchronous execution to hide commu-
nication costs. UPC++ implements one-sided communication as a
thin wrapper over GASNet-EX, delivering efficient performance.
UPC++ has its own “memory kinds” abstraction, which includes
a global pointer class that enables the upcxx: : copy function to
express transfers between any combination of local and remote

!For instance, it is not possible in general to use memcpy () to access device memory
2Support for other network and GPU vendors is planned as future work.

https://doi.org/10.25344/S4P306

SC21, November 14-19, 2021, St. Louis, MO, USA

shared memory whether residing in host or device memory. The
specification and implementation of memory kinds in UPC++ pre-
ceded the development of the corresponding support in GASNet-EX.
Older UPC++ releases staged device memory transfers through host
memory, whereas more recent releases utilize GASNet-EX memory
kinds. Among other results shown on the poster, Fig. 1 shows the
bandwidth of upcxx: : copy for one particular transfer at various
sizes. The data was collected on OLCF’s Summit [19] supercom-
puter and includes series for UPC++ with both the older implemen-
tation of memory kinds that staged through host memory and the
new zero-copy GDR implementation, as well as an equivalent MPI
benchmark using IBM Spectrum MPIL The results demonstrate that
GASNet-EX memory kinds enable substantial improvement in the
performance of upcxx: : copy, taking it from substantially under-
performing relative to MPI, to delivering comparable or superior
performance.

RMA Get Bandwidth (remote GPU to local host memory)
UPC++/GASNet-EX vs. CUDA-Enabled IBM Spectrum MPI on OLCF Summit
16384 T T T T T

N
o
@
>
T

Q

N

i
T

°d
&
T

- 12.5 GB/s (limiting wire speed)

—@— upcxx: : copy With GDR

—6— upcxx: : copy Without GDR
MPI_Get

)
Py

Single-rail Flood Bandwidth (MiB/s)
N
8

L L
16B 64B 256B 1kB 4kiB 16kiB 64kiB 256kiB 1MIB 4MiB
Transfer Size

IS

Figure 1: Performance comparison for GPU to host memory
transfers in UPC++/GASNet-EX and MPI

4.2 Legion

The authors of Legion [3] characterize it as “a data-centric pro-
gramming model for writing high-performance applications for
distributed heterogeneous architectures” [17]. With its focus on
heterogeneous systems, communication targeting GPU memory is
a key part of Legion’s Realm runtime system, making GASNet-EX
Memory Kinds an important feature.

Legion version 20.12.0 retains its GASNet-1 backend while intro-
ducing a new communications backend utilizing the GASNet-EX
APIs. Where the former explicitly stages GPU memory transfers
through the host memory segment, the latter uses a GPU memory
segment to enable RMA operations which target GPU memory
without any staging. Among additional details given on the poster,
Fig. 2 illustrates the performance improvement observed by switch-
ing from the GASNet-1 to GASNet-EX backend using the same
GASNet library release®. These results show up to a 78% bandwidth
improvement for transfers between a local and remote GPU.

3This is possible because GASNet-EX retains API compatibility with GASNet-1.

P. H. Hargrove et al.

Realm "memspeed" Benchmark on DGX-1: Large Copy Bandwidth
GASNet 2020.11.0 release and two Realm implementations

14
— 120 121 12.1 12.3 12.3
© 12 i
o
o
o
» 10 - 4
s 8.0
g 81 ' i
m
e 6f .
L
5
2 4l i
2
S 2F 1 Realm over GASNet-1 AP| -

HE Realm over GASNet-EX API
0 T T
Host/Host Host/GPU GPU/Host GPU/GPU

Memory Types: Local/Remote

Figure 2: Legion memspeed microbenchmark “large copy band-
width” performance for four different transfer patterns in-
volving local and remote host and GPU buffers.

4.3 Kokkos Heat Conduction Example

The third benchmarking study shown on the poster is a Kokkos tu-
torial example, which solves the heat equation in three-dimensions
using GPUs for the computation. This study compares performance
of the original MPI example and a port to UPC++, and finds the
latter performs as well or better on a wide range of problem sizes.
Of particular interest is the finding, illustrated in Fig. 3, that the
per-timestep latency for the UPC++ version is very uniform in
contrast to a very high variability for MPL

| I UPC++ 800
i [MPI 800
1024 i [0 UPC++ 6400
| I MPI 6400
< i
3 i
8 ||
10 4 i
i
1
i
1
10° 4 ;

0 25 50 75 100 125 150 175 200
Time (ms)

Figure 3: Histogram of latency to complete two time steps
(sliding window) of the UPC++/GASNet-EX and MPI heat
conduction simulations for two representative problem sizes.
A dotted vertical line marks the median of each histogram.

5 CONCLUSIONS

GASNet-EX leverages hardware support to portably and efficiently
implement Active Messages and Remote Memory Access (RMA).
The recent addition of support for offloaded communication to and
from GPU memory helps to improve and extend the role of PGAS
programming models on modern heterogeneous systems.

GASNet-EX Memory Kinds

ACKNOWLEDGMENTS

The authors gratefully acknowledge Sean Treichler of the Legion
development team for collecting the raw data presented in Fig. 2.

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of En-
ergy Office of Science and the National Nuclear Security Adminis-
tration.

This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-000R22725.

This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

We gratefully acknowledge the computing resources provided
and operated by the Joint Laboratory for System Evaluation (JLSE)
at Argonne National Laboratory.

REFERENCES

[1] John Bachan, Scott B. Baden, Dan Bonachea, Max Grossman, Paul H. Hargrove,
Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen, and Daniel
Waters. 2021. UPC++ v1.0 Programmer’s Guide, Revision 2021.9.0. Technical Report
LBNL-2001424. Lawrence Berkeley National Laboratory. doi:10.25344/S4SW2T

[2] John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil,
Dan Bonachea, Paul H. Hargrove, and Hadia Ahmed. 2019. UPC++: A High-
Performance Communication Framework for Asynchronous Computation. In
Proceedings of the 33rd IEEE International Parallel & Distributed Processing Sym-
posium (IPDPS). 11 pages. doi:10.25344/S4V88H

[3] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
expressing locality and independence with logical regions. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC ’12). doi:10.1109/SC.2012.71

[4] Dan Bonachea and Paul H. Hargrove. 2017. GASNet Specification, v1.8.1.
Technical Report LBNL-2001064. Lawrence Berkeley National Laboratory.
doi:10.2172/1398512

[5] Dan Bonachea and Paul H. Hargrove. 2018. GASNet-EX: A High-Performance,

Portable Communication Library for Exascale. In Languages and Compilers for

Parallel Computing (LCPC’18). doi:10.25344/S4QP4W

Dan Bonachea and Amir Kamil. 2021. UPC++ v1.0 Specification, Revision

2021.9.0. Technical Report LBNL-2001425. Lawrence Berkeley National Lab-

oratory. doi:10.25344/S4XK53

[7] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007. Parallel
Programmability and the Chapel Language. In International Journal of High
Performance Computing Applications (IJHPCA), Vol. 21. 291-312.

[8] W. Chen, D. Bonachea, J. Duell, P. Husband, C. Iancu, and K. Yelick. 2003. A
Performance Analysis of the Berkeley UPC Compiler. In Proceedings of the 17th
International Conference on Supercomputing (ICS). doi:10.1145/782814.782825

[9] DOE Advanced Scientific Computing Research (ASCR). Facilities. https://science.
energy.gov/ascr/facilities.

[10] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. 2004. A Multi-platform Co-Array
Fortran Compiler. In Proc. 13th International Conference on Parallel Architecture
and Compilation Techniques (PACT). doi:10.1109/PACT.2004.1342539

[11] Deepak Eachempati, Hyoung Joon Jun, and Barbara Chapman. 2010. An Open-

source Compiler and Runtime Implementation for Coarray Fortran. In Proceedings

of the Fourth Conference on Partitioned Global Address Space Programming Models

((PGAS’10)). ACM, Article 13, 8 pages. doi:10.1145/2020373.2020386

Alessandro Fanfarillo, Tobias Burnus, Valeria Cardellini, Salvatore Filippone, Dan

Nagle, and Damian Rouson. 2014. OpenCoarrays: Open-source Transport Layers

Supporting Coarray Fortran Compilers. In Proceedings of the 8th International

Conference on Partitioned Global Address Space Programming Models (PGAS ’14).

ACM, New York, NY, USA, Article 4, 11 pages. doi:10.1145/2676870.2676876

GASNet. home page. https://gasnet.Ibl.gov.

Paul H. Hargrove and Dan Bonachea. 2018. GASNet-EX Performance Im-

provements Due to Specialization for the Cray Aries Network. In 2018

IEEE/ACM Parallel Applications Workshop, Alternatives To MPI (PAW-ATM). 23-33.

doi:10.1109/PAW-ATM.2018.00008

[15] Intrepid Technology, Inc. Clang UPC Compiler. https://clangupc.github.io.

[16] Intrepid Technology, Inc. GCC/UPC Compiler. https://www.gccupc.org.

[17] Legion Programming System. home page. http://legion.stanford.edu/.

=

[12

=
L)

SC21, November 14-19, 2021, St. Louis, MO, USA

[18] Hitoshi Murai, Masahiro Nakao, Hidetoshi Iwashita, and Mitsuhisa Sato. 2017.
Preliminary Performance Evaluation of Coarray-based Implementation of Fiber
Miniapp Suite Using XcalableMP PGAS Language. In Proceedings of the Sec-
ond Annual PGAS Applications Workshop (PAW17). ACM, Article 1, 7 pages.
doi:10.1145/3144779.3144780

Oak Ridge National Laboratory Leadership Computing Facility (ORNL/OLCF).
Summit. https://olcf.ornl.gov/olcf-resources/compute-systems/summit/.
Swaroop Pophale, Ramachandra Nanjegowda, Tony Curtis, Barbara Chapman,
Haogiang Jin, Stephen Poole, and Jeffery Kuehn. 2012. OpenSHMEM Performance
and Potential: A NPB Experimental Study. In Proceedings of the 6th Conference on
Partitioned Global Address Space Programming Models (PGAS’12). https://www.
osti.gov/biblio/1055092

[21] UPC++. home page. https://upcxx.Ibl.gov.

[19

[20

https://doi.org/10.25344/S4SW2T
https://doi.org/10.25344/S4V88H
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.2172/1398512
https://doi.org/10.25344/S4QP4W
https://doi.org/10.25344/S4XK53
https://doi.org/10.1145/782814.782825
https://science.energy.gov/ascr/facilities
https://science.energy.gov/ascr/facilities
https://doi.org/10.1109/PACT.2004.1342539
https://doi.org/10.1145/2020373.2020386
https://doi.org/10.1145/2676870.2676876
https://gasnet.lbl.gov
https://doi.org/10.1109/PAW-ATM.2018.00008
https://clangupc.github.io
https://www.gccupc.org
http://legion.stanford.edu/
https://doi.org/10.1145/3144779.3144780
https://olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.osti.gov/biblio/1055092
https://www.osti.gov/biblio/1055092
https://upcxx.lbl.gov

Artifact Description Appendix for SC21 poster:

"GASNet-EX Memory Kinds: Support for Device Memory
in PGAS Programming Models"

Paul H. Hargrove, Dan Bonachea, Colin A. MacLean, Daniel Waters
Applied Mathematics and Computational Research Division,
Lawrence Berkeley National Laboratory, Berkeley, CA, USA

pagoda@Ibl.gov

This poster features data from multiple systems and benchmarks. This document provides the
available/relevant requested information for each set of experiments plotted on the poster. Due to
publication deadlines, it was not possible to collect data for all experiments using the most recent
software versions.

Panel "GASNet-EX Host Memory RMA Performance versus MPI RMA and
Isend/Irecv"

Because this panel is used to establish the baseline/background for the new work, the majority of its
plots are reproduced with permission from our prior publication at LCPC'18
(https://doi.org/10.25344/S4QP4W). Section 3 of that publication provides information on the
platforms used and benchmarks run.

The results for Summit (one group of bars in the latency plot and one entire bandwidth plot) are new,
since the LCPC'18 paper predates public availability of Summit. Details of Summit at the time the
data was collected are as follows, with all other details of the benchmarks run remaining unchanged
from the LCPC'18 paper.

e "Summit" (see https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/)
e Relevant computer node hardware
o IBM Power System AC922 node
o 2x IBM POWER9 CPUs
o 6x NVIDIA Volta V100s
o Mellanox EDR 100G InfiniBand (dual-rail, ConnectX-5 HCAs)
e Relevant software versions
o Red Hat Enterprise Linux Server 7.6
Linux 4.14.0-115.6.1.el7a.ppc64le kernel
IBM XL C/C++ for Linux, Version 16.1.1.3
IBM Spectrum MPI1 10.3.0.0
Intel MPI Microbenchmarks 2019.2

o
o
o
o

https://doi.org/10.25344/S4QP4W
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Panel "UPC++ Microbenchmark Results with GPU Memory"

These results are from runs, on Summit, of "cuda microbenchmark" in the UPC++ distribution and
"osu_get_bw" from the OSU suite of MPI micro-benchmarks.

"Summit" (see https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/)
Relevant compute node hardware
o IBM Power System AC922 node
o 2x I1BM POWER9 CPUs
o 6x NVIDIA Volta V100s
o Mellanox EDR 100G InfiniBand (dual-rail, ConnectX-5 HCAs)
Relevant software versions
o Red Hat Enterprise Linux Server 7.6
Linux 4.14.0-115.6.1.el7a.ppc64le kernel
GNU gcc/g++ compilers, version 6.4.0
IBM Spectrum MPI1 10.3.1.2
UPC++ 2020.11.0
CUDA 10.1.243
o OSU Micro-Benchmarks 5.6.3
Commands used to launch benchmarks on two nodes with 1 process and 1 GPU per node:
jsrun --smpiargs=-gpu -g1 -r1 -p2 ./cuda_microbenchmark -t 100 -w 100 -sg
jsrun --smpiargs=-gpu -g1 -r1 -p2 ./osu_get_bw —-i 100 -d cuda D H

O O O O O

Panel "Legion Microbenchmark Results with GPU Memory"

This panel's figures are the authors' presentation of raw data provided by Sean Treichler of the
Legion development team at Nvidia, who provided only the following information: "All runs performed
on same pair of DGX-1, using only 1 GPU (V100), 1 NIC (CX-6), and 1 NUMA domain per node".
Software versions used include "GASNet-2020.11.0-memory_kinds_prototype" (available from
gasnet.Ibl.gov) and the developer's version of Legion's librealm which preceded their 20.12.0 release.

Panel "UPC++ Application Kernel Performance"

These results are from runs, on Summit, of a Kokkos tutorial example as described on the poster and
its references.

"Summit" (see https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/)
Relevant compute node hardware
o IBM Power System AC922 node
o 2x IBM POWER9 CPUs
o 6x NVIDIA Volta V100s
o Mellanox EDR 100G InfiniBand (dual-rail, ConnectX-5 HCASs)
Relevant software versions
o Red Hat Enterprise Linux Server 7.6
Linux 4.14.0-115.6.1.el7a.ppc64le kernel
GNU gcc/g++ compilers, version 8.1.1
IBM Spectrum MPI1 10.3.1.2
UPC++ 2021.3.0
CUDA 10.1.243
Kokkos 3.4.0

O O O O O O

https://bitbucket.org/berkeleylab/upcxx/src/master/bench/cuda_microbenchmark.cpp
https://ulhpc-tutorials.readthedocs.io/en/latest/parallel/mpi/OSU_MicroBenchmarks/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

GASNet-EX Memory Kinds: Support for Device Memory in PGAS Programming Models

Paul H. Hargrove, Dan Bonachea, Colin A. MacLean, Daniel Waters

Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory
https://gasnet.1lbl.gov pagoda@lbl.gov

GASNet-EX Background GASNet-EX Support for GPUDirect RDMA (GDR)

+ GASNet-EX is communications middleware to support exascale clients . GASNet-EX is an evolution of GASNet-1 for exascale * Memory kinds concept expresses use of device memory in RMA endpoint arguments . .
: : T : : : : - No GPUDirect RDMA GPUDirect RDMA
* Widely adopted for implementation of Partitioned Global Address Space . Retains GASNet-1's wide portability (laptops to supercomputers) me(;ementathntcgr; ee;]sﬂyl identify aﬁprorglgtj Sranif;rDTﬂeAchérBsRm, including
(PGAS_) programming rr_lodels « Focus remains on one-sided RMA and Active Messages araware-assisted 1echnologies such as rec () Cﬂ Syshem Sysmem
» One-sided communication — Remote Memory Access (RMA) . Reduces CPU and memory overheads * GASNex-EX supports GDR in recent releases

. Active Messages (AMs) - remote procedure call * Removes host CPU and memory bottlenecks from one-sided transfers

* Improves support for aggressive multi-threading g GPU

w
set

» Implemented over native APIs of all networks of interest to DOE . Adds support for devi GPU to/from GPU memory, achieving true zero-copy (see diagram at right —)
pport for device memory (S) .
» Currently supports Nvidia and AMD GPUs; and Mellanox network adapters e |
Exascale Scientific Applications J + Other accelerators and networks are the subject of future work, including niniEan RINEEC
" * Intel GPUS, HPE Slln ShOt_1 1 network mage source: https://developer.nvidia.com/blog/introduction-cuda-aware-mpi
Legion || upc++ || chapel || upc || cAFFortran || .. | ° o
GASNet-EX } :)
— r - UPC++ Microbenchmark Results with GPU Memory
InfiniBand Cray XC libfabric/OFI Ethernet MPI
« UPC++ is our C++ productivity layer over GASNet-EX RMA Get Bandwidth (remote GPU to local host memory)
_ _ UPC++/GASNet-EX vs. CUDA-Enabled IBM Spectrum MPI on OLCF Summit
GASNet-EX Host Memory RMA Performance versus MPI RMA and Isend/Irecv + Has its own analogous memory kinds concepts Ry bttt it il
 Uses upcxx: :copy () to express RMA between arbitrary shared memory 2 | é '
» Three different MPl implementations | . | | | + Measurements of flood bandwidth of upexx: : copy () on OLCF’s Summit S 4061 ' :
» Two distinct network hardware types 10 9°“"1Has.""e":”ei CZ"M: — g5 2ummit [BMPOWERS, Dual-Rail EDR InfiniBand, 1M Spectrum MP] . Difference between UPC++ releases with and without GASNet-EX memory kinds g -k A :
o _ I s i ffiff el Rl e el _ : ; 2
Ontfohur systems tZe {Dher:‘orfml\;alglceRlc\)/lfAGASdNet EX : | A 20 | il i shows benefit of GASNet-EX's new support for GDR 2 » 0
message-passing: = al S | _ =
o o = = , « Large transfers: 2x better bandwidth O el | | | | |
« 8-byte Put latency 6% to 55% better 5 5 5 _ . T | ' ——————— '
5 . = Sl L _ « Small transfers: up to 30x better bandwidth = | ---- 12.5 GBIs (limiting wire speed)
« 8-byte Get latency 5% to 45% better £ —— GASNetEX Put S -4 [GASNEEEX Put Get fions to/from GPU - blv to host T 16k - | ~® upcxx: : copy with GDR i
. . . . - t - [: .. i
. Better flood bandwidth efficiency, typically ks R/ 20 R o— MPIRMAPU | s Y. <o o— MPIRMAPW | e ope.ra jons to/from memory now perform comparably to host memory % j: upcxx.: : copy without GDR
Satura“ng at 'yz or % the transfer S|Ze 1L e e e-- MP|I RMA Get | | P - R e-- MP|I RMA Get - ¢ CompaI’ISOHS tO MPI'3 RMA N CUDA'enabled IBM SpeCtrum MPI ShOW UPC++) 4 | i — i i i
o Lo+ MPliSendRecv oe=®" |-+ MPlISend/IRecv Q saturating to peak bandwidth at smaller transfer sizes 16 B 64 B 256 B 1kiBT 4ki|? S1.6kiB 64kiB 256kiB 1MiB 4MiB
4.5 256 B 1kB 4kiB 16kiB 64kiB 256kiB IMiB 4MiB 256 B 1kiB 4kiB 16kiB 64kiB 256kiB IMiB 4AMIB [\ ransier size
Emm GASNetEX Put Transfer Size Transfer Size 0 UPC++ results were collected using the version of the cuda benchmark test that appears in the 2020.11.0 release.
4+ == MPI RMA Put) = MPI results are from osu_get_bw test in a CUDA-enabled build of OSU Micro-Benchmarks 5.6.3.
@ . — SﬁISEISItAEée(Eet _ o Cori-ll: Xeon Phi, Aries, Cray MP| - Gomez: Haswell-EX. InfiniBand, MVAPICH2 All tests were run between two nodes of OLCF Summit, over its EDR InfiniBand network.
5 E; 5 ol e e - : ggﬂ@a ------- P _ _ _
_ A
oA |2 s e I) Legion Microbenchmark Results with GPU Memory
% = 40 27 A e e 5 8l
2 (|8 5| S 6| o
2 g 5 51| £ 6 Legion characterizes itself as “a data-centric pr()gramming model Realm "memspeed" Benchmark on DGX-1: Large Copy Bandwidth Realm "memspeed" Benchmark on DGX-1: Small Copy Latency
Q 15| g 4 g e GASNet 2020.11.0 release and two Realm implementations GASNet 2020.11.0 release and two Realm implementations
o - 5 47 —— GASNetEX Put 5, —— GASNetEXPut | for writing high-performance applications for distributed 14 70
I S 3 MPI RMA Put 1 © MPI RMA Put . ’y N 12 .3 123 61.8
= ! @ | AN <. GASNetEXGet || |I® | 7 o <. GASNetEX Get hetgrogeneous arch!tectures.. o | 5 12 [120 2 12.1 _ el
0.5 I PSR O mg: IF;MAdﬁst _ D e 0 mg: IF;MAdﬁF?t ‘ * Legion’s Realm runtime provides communication services 5 |) A 408
0 0 k e o — . = 0 e iem ea — . = Originally implemented over GASNet-1 o = 2.0
. . . 256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB 256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB 8| 2 40 oo S .
Cori-| Cori-|| Summit Gomez ! | el i | | | | | e | | | « Still works using legacy API support in current GASNet-EX § § S
8-Byte RMA Operation Latency (one-at-a-time) Uni-directional Flood Bandwidth (many-at-a-time) * Realm recently introduced a new GASNet-EX backend which s o < °r 0 0 |
. . . , embraces EX-specific capabilities S 4f o 2 20 - 17.6
GASNet-EX results from v2018.9.0 For more details see Languages and Compilers for Parallel Computing (LCPC'18). -Spectt P = = 2
MPI results from Intel MPI Benchmarks v2018.1 https://doi.org/10.25344/S4QP4W + Leverages immediate, NPAM, and LG handles for AM 3 21 o 22 Over GASNet 1 AP S or '
. PS. ! g . o Leverages memory kinds for RMA, gaining GDR Support ; I— Realm overlGASNet—EXAPI ; I— Realm overlGASNet—EXAPI
. . e . Host/Host Host/GPU GPU/Host GPU/GPU Host/Host Host/GPU GPU/Host GPU/GPU
G ASN t EX M K. d . .Multl-end.pomt for RMA to/from additional hogt memory regions Memory Types: Local/Remote Memory Types: Local/Remote
et- emory Ninas » Figures at right show some performance benefits of using GDR | | |
. Large GPU transfers: bandwidth now matches host memory The authors gratefully acknowledge Sean Treichler of the Legion development team for collecting the data we present above.
« Performance for host memory RMA (see panel above) is largely due GASNet-EX’s ability to efficiently High-level Obiect Model » Small GPU transfers: 2.2x to 3.0x latency improvement

utilize Remote Direct Memory Access (RDMA) capabilities in modern network hardware
 No remote CPU involvement required for network adapter to access application memory
« Simple and efficient implementation due to good semantic fit to the PGAS model
* The goal: extend GASNet-EX RMA to memory in devices such as GPUs, in addition to host memory

UPC++ Application Kernel Performance

. _ " . « Kokkos' is a popular on-node programming model providing C++ abstractions for use of multi-core Histogram of execution time for two time steps (sliding
C-hageorll\?eed15 Rtlag/l ﬁa?g\?vzlile“%/e?crlocrf \liamglgnlj)g/irlesc?zeg&ifgebeeit pgicr)irrp]? n(:\el) and GPU-accelerated nodes with a single version of the application source code window) on 128 nodes of OLCF Summit, using 6 procs/node
. Chal 2-yR taining effici 1 the GASNet-EX impl tati PPEFTIINt P _ _ » We converted a Kokkos tutorial example? from use of MP| message passing to UPC++ RMA and 1 GPU/proc, for problem sizes 800° and 6400°
4 oNge 2. Feining smoiency In he SrEAIMpISmenteton Client Object » Use of UPC++ memory kinds for device memory management (Dashed vertical lines mark the median of each distribution)
* This is addressed by our design of a new “memory kinds” abstraction in GASNet-EX . Use of ubexx - - copv for one-sided RMA data movement and remote notification _: : —
« Challenge 3: Design for extensibility to other byte- or block-addressable "memories” Nespi P 1 e pyh _ y 4 4 oerf diff i i | UPC++ 800
. Our design encompasses such possible kinds as FPGA and storage * Despite no c anges to the computation, We observe unexpected performance di erences i 5 | MPI| 800
. Our solution: extend the concept of the “remote-access segment” « UPC++ RMA delivers bet-ter strong scaling (not pllctu,red here) than MP| message passing 1024 | | UPC++ 6400
« The arguments to every RMA operation specify a local and remote communications endpoint j Evgn when performance. 's comparable, MP! version's performance has .much Iarger variance (] i MP1 6400
. To be valid for RMA operations, an endpoint must have an associated “bound segment” » This figure shows the relative performance and variance for two problem sizes and fixed resources & i |
. NEW: ’ * Histograms show the frequency of execution times, using a sliding window over two time steps 3 i : |
. A “kind” can be created for each device: e.g. “CUDA device 0", “HIP device 2’ to fairly account for MP| Recv and Send matching (this reduces MPI's measured variance) > 101 - i | i
. Instead of just a single implicit segment. rﬁuitiple explicit segm,ents are supported (Optional) UPC++ runs show lower (faster) median time step latency than the corresponding MPI runs i ! |
. Binding UPC++ runs show narrower (lower-variance) distributions than the corresponding MPI runs i ? :
* Creation of a segment names the kind, along with a size and optional address s A i . . | : :
* This design means every RMA operation knows the device(s) involved from the existing arguments Memory Seg ment o Eﬂfgigrﬁgeﬁlearn?giggtmt\?viﬁr;dpi,r;??g : r\]/sofllgglgstteall\lflzlnvlfrri?;; ?r;c?rrrlmciin;e'peat e comparison 10° L E
 Device addresses identified without dynamic queries or interposing on memory management APIs kind (host. device). address. lenath h _ | L ! ' ! - ' S - -
. Good match to UPC++ and Legion programming models which already track host vs. device memory \ (. ’), , g y D. Waters, C. A. _Macl__ean, D Bonachea, P. H. Hargro'\'/e. Demonstrating UPC++IKokI§os_Interoperablllty in 0 25 50 75 100 125 150 175 200
- a Heat Conduction Simulation (Extended Abstract)"”, In 2027 IEEE/ACM Parallel Applications Workshop, Time (ms)
Alternatives To MPI+X (PAW-ATM), St. Louis, MO, Nov 2021. 5 pages. https://doi.org/10.25344/S4630V |
UPC++ results use UPC++ v2021.3.0 w/ GPUDirect RDMA
— A [1] https://kokkos.org MPI results use CUDA-enabled IBM Spectrum MPI v10.3.1.2
rr/rrr\rrl '"| [2] https://go.Ibl.gov/paw21-kokkos-mpi-heat-conduction

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa i This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

© 2021, Lawrence Berkeley National Laboratory This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.
https://doi.org/10.25344/S4P306 We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory. EXASCALE COMPUTING PROJECT

-\ |:
BERKELEY LAB This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. E (C\)
K..-

https://gasnet.lbl.gov
https://gasnet.lbl.gov
https://upcxx.lbl.gov
https://legion.stanford.edu/
https://legion.stanford.edu/
https://upcxx.lbl.gov
https://doi.org/10.25344/S4QP4W
https://doi.org/10.25344/S4630V
https://doi.org/10.25344/S4P306
https://go.lbl.gov/pagoda
https://doi.org/10.25344/S48W25

	1 Introduction
	2 Background
	3 Memory Kinds
	4 Benchmark Highlights
	4.1 UPC++
	4.2 Legion
	4.3 Kokkos Heat Conduction Example

	5 Conclusions
	Acknowledgments
	References
	Artifact Description Appendix
	Poster

