
AMUDP: Active Messages Over UDP
CS294-8 Semester Project, Fall 2000

Dan Bonachea and Dan Hettena

{bonachea,danielh}@cs.berkeley.edu

1 Abstract
Active Messages (AM) is a lightweight messaging protocol used to optimize network
communications with an emphasis on reducing latency by removing software overheads
associated with buffering and providing applications with direct user-level access to the
network hardware [1]. AM provides low-level asymmetric network messaging primitives
which have come into popular use as a low-level substrate in the implementations of
higher-level parallel languages and systems, for example MPI, Split-C, Titanium, and
others [10], [15], [16].

Most implementations of AM are highly hardware-specific, and in particular they usually
require the support of high-performance, non-commodity "smart" network interfaces such
as Myrinet [12]. This unfortunately presents a problem when trying to run AM-based
software on systems that have commodity network interface hardware, or network
interfaces for which no AM implementation is readily available. This first part of this
project attempts to bridge that gap by providing an AM-2 implementation that runs on
UDP, a standard component of the TCP/IP protocol suite that is ubiquitous across
platforms and operating systems [13]. We don't expect to achieve latency performance
competitive with a native implementation of AM optimized for special purpose hardware,
instead we seek to provide a compatibility layer that will allow AM-based systems to
quickly get up and running on virtually any platform. The motivation for choosing UDP
over other protocols (such as TCP) is that it typically provides the lowest overhead access
to the network with little or no internal buffering, and the connectionless model is best
suited for scaling up the number of distributed processors. Because UDP occasionally
drops packets, we add a thin reliability layer that provides the guaranteed delivery
required by AM-2, hopefully providing this fault tolerance with better performance than
full-blown TCP.

In the second part of this project, we attempt to further optimize the AM over UDP layer
by targeting a specific commodity Ethernet interface (the Intel EtherExpress Pro 100).
We provide a special version of the AM layer that bypasses the kernel implementation of
UDP for that network interface card (NIC) and uses high-performance direct hardware
access with minimal buffering. This provides a high-performance AM implementation on
systems that use the Intel EtherExpress Pro 100 commodity hardware (which is very
common on x86 architectures), and specifically will provide high-performance active
messages on the IStore architecture which also uses that NIC [6].

2 Introduction & Motivation

2.1 AM Applications
Active messages is a lightweight, low-level messaging protocol used in various software
systems, and provides high-performance, low-latency network communications with
minimal kernel interaction. AM is frequently used as a bottom-level networking layer in
parallel programming environments and languages such as MPI and Split-C.

One notable system that currently utilizes active messages as a communications layer is
Titanium, a parallel dialect of Java developed at UC Berkeley [16], [19]. Titanium has a
global memory space abstraction, allowing applications to concisely address memory on
remote processors. As a result, Titanium applications can be quite sensitive to network
latencies, so considerable effort is made to use the most lightweight communication
protocols available on a given distributed architecture in the implementation of the
runtime system.

One of the primary goals of Titanium is portability across a variety of distributed
computing platforms, and backends have been written using various lightweight
networking layers: active messages, IBM’s LAPI protocol, and Cray’s SHMEM library.
Of these, the most portable and hardware-independent interface is active messages, and
AM implementations exist for several specific varieties of network hardware. However,
to our knowledge there’s no truly portable, hardware-independent implementation of
active messages available. AMUDP provides a very portable implementation of AM
requiring only UDP, thus providing a quick and easy way for active-message-based
systems (such as the Titanium runtime system) to get up and running on virtually any
distributed architecture.

2.2 Portability

2.2.1 Why UDP?
The primary reason we chose UDP as our lower-level protocol is that it’s the lightest
weight network protocol that’s widely portable (by virtue of being included in the TCP/IP
protocol suite). It provides checksums that prevent corrupted packets from being
delivered, but doesn’t provide any guarantees about packet delivery or order of arrival
that could degrade latency performance.

2.2.2 Why not TCP?
The only other protocol that offers such widespread portability is TCP, so a fair question
to ask is, why not TCP? The first reason is latency performance – TCP provides a generic
protocol for guaranteed, in-order delivery of stream-based data, and this generality and
reliability comes at a price in performance. TCP is also a somewhat complicated
protocol, and as a result many implementations incur significant software overheads in
data copies and buffer management.

AM guarantees message delivery, but doesn’t require in-order delivery. Furthermore, the
communication pattern is strictly request-response, and most messages have a small,

fixed maximum size. In implementing AMUDP we’ve taken advantage of these
specialized characteristics, augmenting UDP to provide the required delivery guarantees
with highly streamlined buffer management and essentially no extraneous network
messages.

The second reason why TCP is not a good choice is because it’s connection-oriented.
Active messages allows messages to flow between arbitrary endpoints within a group of
communicating systems, so the number of total TCP connections required to implement
active messages over TCP would be quadratic in the number of communicating
processors. Because each TCP connection consumes non-trivial resources, such a
solution would not scale well to large distributed systems. On the other hand UDP is
connectionless and easily allows packets to be sent between arbitrary endpoints in a set of
communicating machines, which is an ideal match for the AM model.

2.3 Performance & Fault Tolerance
In addition to portability, we also have the obvious goals of providing performance (in
the form of low latency and good bandwidth utilization) and fault tolerance (taking
advantage of the redundant IStore NIC hardware, and guaranteeing reliable delivery in
the face of hardware packet loss).

3 Design of AMUDP

3.1 Overview
The AMUDP library implements the majority of
the Active Messages–2 specification [8], with a
few small caveats described in section 3.5. It
consists of about 7000 lines of C/C++ code, and
took just over a week to complete. The library
supports active message applications written in C
and C++, and should run on any standard UNIX
or Microsoft Windows system that provides UDP
(which is included in virtually all TCP/IP
implementations). In addition to the functionality
required by the AM specification, the AMUDP
library also includes a concise interface that
provides a portable mechanism for parallel
SPMD job startup, and a performance
introspection API that monitors library activity
and reports on various performance metrics of
interest.

Figure 1 demonstrates the high-level system view of an AM-based application running on
AMUDP. As shown, AMUDP currently runs on one of two possible backends (selected
at library compilation time). The UDP backend, which is very portable and should run on
any reasonable OS and hardware, and the optimized, user-level UFXP backend, which is
specific to the Intel EtherExpress Pro 100 NIC used in the IStore architecture.

AMUDP

UDP

AM Application

UFXP

IStoreany OS

Figure 1: High-level AMUDP
System Architecture

3.2 Portability

3.2.1 AMUDP runs everywhere
Traditionally, implementations of active messages have been very hardware-dependent
and platform-dependent, primarily to minimize software latencies and maximize
performance. Most accomplish this by exploiting some mechanism for direct user-level
access to the network hardware without kernel intervention, which is inherently a
hardware-dependent optimization in current operating systems. AMUDP sacrifices a
small amount of performance to achieve widespread portability and ease of use. By using
the standard UDP driver, we incur the performance penalty of kernel interaction, but gain
the ability to run on any platform and even in environments with heterogeneous network
hardware and/or operating systems.

3.2.2 Portable, automatic job startup and endpoint naming system
The AM-2 specification intentionally avoids any position on how an application obtains
the names and tags of remote endpoints – it merely provides functions for allocating
endpoints, retrieving opaque name values from them, and setting opaque names and tags
in the translation tables of an endpoint. Furthermore, they provide absolutely no support
or specification describing how a parallel AM job gets initiated across the nodes in a
distributed computing environment. These design decisions were wise in the interests of
creating a portable specification that could be implemented on many distributed
architectures, because job startup and naming systems are frequently implementation
dependent. However, the unfortunate result was that most AM implementations also
provide no direct support for spawning jobs or obtaining remote endpoint names – rather,
they generally choose to rely on external utilities which are often platform-dependent and
even site-dependent for accomplishing these tasks. This led to lengthy, configuration-
dependent and often error-prone “boiler-plate” initialization code appearing in the main()
functions of most AM applications, which generally increased the complexity of writing
AM-based applications and obscured some of their functionality.

In pursuit of the goal of creating a truly portable AM-2 implementation, the
implementation of AMUDP also includes a library that provides portable job startup and
endpoint initialization services for SPMD-like AM applications. SPMD-based AM
applications can perform virtually all their initialization tasks on AMUDP by calling a
single library routine (AMUDP_SPMDStartup()) very early in their main function, and
providing the number of processors in the job and a copy of the command-line
arguments. The implementation of AMUDP_SPMDStartup() automatically takes care of
spawning the correct number of remote processes, establishing connectivity between
them (by creating endpoints and setting up their translation tables and tags correctly), and
establishes services for forwarding input and output between the worker processes and
the user console as necessary. On the worker processes, the call to
AMUDP_SPMDStartup() returns with an endpoint that is essentially ready for use – all
the application has to do is register its AM handler functions by calling AM_SetHandler,
and it can start using the endpoint. In addition, AMUDP provides calls for obtaining
processor rank and parallel degree, terminating a parallel job, and executing a non-

optimal, but functional barrier (useful for bootstrapping synchronization-related
handlers).

The job spawning mechanism in AMUDP_SPMDStartup() works by executing a callback
to a provided function pointer argument with the name and arguments for the remote
worker process that must somehow be spawned on the remote nodes. All the spawning
function has to accomplish is for a process to be created on the remote node running the
current executable with the given arguments, and AMUDP can take it from there. This is
the one inseparably platform-dependent component of the initialization process, as many
cluster sites provide their users with locally developed scripts or programs used for
remote job spawning. The AMUDP library includes default implementations of this
spawning function for several common spawning mechanisms, namely: ssh remote shell,
rexec, GLUNIX spawn, and local process spawn (for debugging purposes) – their
implementations range in size from 4 lines (for local spawn) to about 100 (for ssh
spawn), and creating new spawning functions to accommodate different site conventions
should be very easy.

Figure 2 illustrates the architecture for
the job startup system that shows how
the necessary coordination is
accomplished. When the master node
(the job spawned locally by the user)
enters the AMUDP_SPMDStartup()
function, it binds a TCP port that is used
to bootstrap communication with the
worker nodes by passing them the
master port address through “hidden”
command line arguments. Once the
spawning function causes the remote
copies of the AMUDP application to
start running, they also call the
AMUDP_SPMDStartup() function,
which uses the hidden arguments to
recognize it is a worker process, and uses the master port to connect to the master process
and establish communication. Each worker sends the master the name of a newly created
endpoint (an IP address/port combination for the UDP backend). Upon hearing from the
last worker, the master sends each worker node a rank, a tag, and a copy of the other
endpoint’s names and tags for insertion in their endpoint translation table (also some
other general info such as job parallel degree).

3.3 Overview of the HPAM protocol
The AM-2 specification guarantees that all messages will be delivered, or returned to
their sender with an explanatory error code. Because UDP is an unreliable protocol, one
of the primary challenges in implementing AM-2 over UDP was adding a low-cost
reliability mechanism.

Master Node

User Console

Worker
Node

Worker
Node

Worker
Node

Worker
Node

TCP control links

UDP or ufxp data links

active message

Figure 2: AMUDP Job startup and
control architecture

The design of our reliability protocol was heavily influenced by the HPAM protocol [9],
which was used to implement a restricted form of active messages over an unreliable
datagram protocol resembling UDP. The protocol handles almost every situation we care
about, and aggressively takes advantage of AM’s strict request-reply model to provide
streamlined buffer management and reliable delivery with zero overhead in the common
case of no packet loss due to hardware failure.

Figure 3 (borrowed from [9]) illustrates the basic operation of the protocol. At the core
of the protocol is the idea that because AM is strictly request-reply, it’s possible to
perform allocation for all the network buffers needed to send and receive a request and its
corresponding reply along the entire network path before sending the request. At the start
of the parallel job, we set a fixed network depth (D) which is the maximum number of
outstanding requests allowed in the system at any time (requests which haven’t yet
received a reply). Each processor allocates 2*(P-1)*D send buffers and 2*(P-1)*D
receive buffers (where P is the parallel degree), which ensures that once a request is sent,

Figure 3: The HPAM reliability protocol (D=4)

there is always a free buffer available along the network path the message and its
corresponding reply must travel, so we never deadlock or drop packets due to congestion.
Thus, the buffer allocation problem reduces to selecting a free “instance” (where there are
D instances for each processor-processor pair) of the protocol at the request initiator
which corresponds to a free request receive buffer on the replying node, a specific reply
send buffer at the replying node, and a reply receive buffer on the requesting node. The
“hint” pointers pictured above are used to optimize this selection, which are managed
such that in the common case they always point to a free instance.

Reliability is achieved by leveraging the reply message as an ACK that indicates the
corresponding instance can be freed, so in the common case we send no extra messages.
The requestor uses a timestamp to decide when the request or corresponding reply should
be considered lost and retransmits the request from the same send buffer. If the reply is
the one that got lost (i.e. after the request handler ran), the replying node detects this
condition using a 1-bit sequence number and resends the reply from the instance reply
buffer (this enforces the AM invariant that handlers run exactly once or not at all).

The interested reader is encouraged to consult [9] for further details on the protocol’s
operation.

3.4 Fault tolerance

3.4.1 Guaranteed delivery and returned messages
AM requires that all messages accepted for delivery are either successfully delivered to
their destinations (and cause the corresponding handler to run exactly once) or are
returned to the sender where they execute a “returned message” handler with an error
code stating the reason why the message was rejected by the remote node (including one
for persistant network congestion at the destination or catastrophic network failure).
These semantics are fully implemented by AMUDP and support the construction of more
robust active-message based applications.

Guaranteed delivery is provided through request retransmissions when a corresponding
reply isn’t received within a given timeout window, which is grown using exponential
back-off with each loss (on a per-packet basis) to prevent flooding the destination.
Incidentally, retransmissions are the only case in the HPAM protocol that can result in
messages to be dropped on the receiver side due to insufficient buffer space, so we set the
timeout high enough to avoid re-transmitting a packet unless we can be reasonable
certain that it was really dropped. Empirical evidence has shown that non-faulty, modern,
wired networks are extremely unlikely to ever drop packets for any reason other than
congestion, so we feel justified in optimizing protocol performance for the common case
of no packet loss (provided we still ensure correct behavior in the presence of packet
loss).

Given guaranteed delivery, returned messages are implemented fairly easily by
performing the series of required tests (tag check, length check, etc) on all received
packets and transmitting them back to the sender with a return-to-sender error code as
necessary. Requests that exceed a maximum timeout (currently 30 seconds) are

presumed undeliverable due to persistent congestion at the destination or catastrophic
network failure and are returned to the application handler by the requesting node.

3.4.2 Fault injection capabilities
In order to properly evaluate the functionality and performance of AMUDP in the face of
high transient network failure rates (such as one may find with a bad network cable) we
added a fault-injection feature to AMUDP that directs it to drop a fraction of all received
messages as if they’d never arrived. This fault injection experiment revealed a heisenbug
in the implementation of the request retransmission algorithm that would have been very
difficult to find any other way. Once that problem was fixed, we were able to verify that
AMUDP continues to operate correctly even with high packet loss rates (results are
shown in section 5).

3.4.3 NIC fail-over transparent to the AM application
A final fault tolerance feature of AMUDP is that the UFXP backend of AMUDP
performs NIC fail-over on systems equipped with multiple network cards (such as IStore)
in a way that should be totally transparent to the application (providing it’s running under
the SPMD job startup API). When a NIC failure notification is posted to the AMUDP
library by the UFXP driver, the information about the old and new endpoint address is
sent to the master node, which then propagates the information out to all the worker
nodes. The worker nodes silently update the contents of all their endpoint translation
tables to reflect the address change, thereby routing new requests and retransmissions for
dropped requests (possibly lost with the card) to the new NIC.

3.5 How AMUDP differs from the AM-2 Specification
AMUDP implements the vast majority of the AM-2 specification [8], with a few small
exceptions as detailed in the sections that follow. For the most part, these deviations
were perceived necessary to satisfy our performance and portability goals, and we feel
they shouldn’t pose any problems for the AM-based applications of interest.

3.5.1 General Limitations
• We don't implement concurrent bundle/endpoint access (AM_PAR type) – The

AM-2 spec allows users to create a bundle with a parallel access type, which
means the library performs the locking necessary to allow multiple application
threads to concurrently call AM entry points. We currently only implement the
sequential access type, primarily to avoid the platform dependent nature of thread
locking primitives – applications can trivially ensure sequential access by placing
locks around all calls to AM functions (Titanium already does this to handle other
AM implementations with similar restrictions). However, we’re considering
adding support for AM_PAR in the future, because library-provided locking
should achieve far greater concurrency than application-level locking, providing
better performance for heavily multi-threaded AM applications.

• An implicit assumption in the HPAM protocol is that all endpoints are told at job
startup time the names of all the other endpoints with which they communicate
directly (send messages to or receive messages from). As a result, our AMUDP
library is slightly less general than the AM-2 spec, requiring application behavior
somewhat closer to the typical SPMD model. AM applications running on
AMUDP must call AM_SetExpectedResources() exactly once on an endpoint
after setting up the translation table and before making any calls to the transport
functions. It is an error to call AM_Poll, AM_Reply* or AM_Request* before the
call to AM_SetExpectedResources(). It is also an error to call AM_Map,
AM_MapAny or AM_Unmap (which change the translation table) after the call to
AM_SetExpectedResources(). This has the effect of “freezing” the endpoint’s
translation table to the list of endpoints to which it may send active messages.
Similarly, active messages are only accepted from endpoints listed in the
translation table of the destination endpoint - all other messages are returned to
sender. Note that we still permit modification of remote endpoint tags on the fly
(which normally is handled by re-mapping the remote endpoint using AM_Map)
- the new entry point AMUDP_SetTranslationTag() allows this to occur after the
call to AM_SetExpectedResources(). Regarding the specific call to
AM_SetExpectedResources(), the n_endpoints parameter is ignored, but the
n_outstanding_requests is taken to be the network depth parameter for the HPAM
protocol, and therefore has a direct impact on the memory usage and performance
of the network layer - setting it too large may cause an error to be returned.

• Finally, we don't support taking the address of AM_ entry point "functions"
(because many are implemented as macros)

3.5.2 Limitations when running AMUDP on the UFXP backend
• We don’t allow more than one concurrent endpoint per application while running

on UFXP, because we currently bind each AM endpoint directly to a hardware
NIC. In the future, we may provide a way to multiplex multiple AM endpoints on
a single UFXP NIC.

• When using UFXP, en_t names of remote and local endpoints may change during
any AM_ transport call (to provide fault-tolerance in the face of remote NIC
failures), so the application should not keep copies of these around in local data
structures across AM transport calls. This should not be a serious limitation
because en_t objects are opaque to the AM application, so the only thing it can
really do with them is retrieve them from remote nodes and place them in the
endpoint translation table (where they will automatically be fixed up upon remote
failure).

3.5.3 Restrictions

3.5.3.1 Job startup API
The job startup API only works for AM applications that can be cast within a SPMD-like
communication model (where all processors can communicate with all others), as this

was perceived to be the most common type of AM application, and probably general
enough to encompass most models that others that users may wish to use. Note the
AMUDP implementation of the AM entry points doesn’t require SPMD behavior
(beyond the limitations described above) – it also permits more bizarre communication
patterns allowable under the AM spec (for example, a pattern where endpoints are
restricted to communicate only with nearest neighbors in some N-dimensional grid), it
simply doesn’t provide automatic job creation functionality for such non-SPMD
configurations.

3.5.3.2 Bulk Transfers
The AM-2 specification provides several functions for supporting bulk requests and
replies, and requires that all implementations support these bulk transfers with a
maximum transfer size of at least 8192 bytes. Because it’s necessary to support
retransmitting any lost packets (including those which may be part of a bulk transfer) at a
later time, we must keep a copy of the transferred data somewhere in the communication
layer. The most natural solution would be to set our buffer size large enough to handle
the largest bulk transfer (that is, use 8192-byte buffers) – however, the 8KB minimum
that seems reasonable at first glance quickly proves non-workable and wasteful for this
design (for example, in a 64-processor job with a network depth of 10, this design would
require 20 MB of memory for the communication buffers alone, most of which would
probably never be used).

The original HPAM protocol makes no provision for implementing “bulk” transfers, that
is, where the size of the requested bulk transfer exceeds the size of a single HPAM buffer
(in their case, 4500 bytes). The paper claims this functionality can be built on top of the
provided medium-sized messages – while this may be true from within an application
that has knowledge of its memory behavior, we contend it’s not possible to provide the
semantics required by the AM bulk transfer functions on top of the HPAM protocol
without violating the strict request-reply model of AM or imposing significant dynamic
buffer management and data copying. Specifically, the AM function AM_ReplyXferM
can be called from any request handler and directs the communication system to send a
bulk reply to the requesting node. However, the HPAM protocol performs all buffer
allocation on the requesting node, so if the bulk reply size exceeds the capacity of one
HPAM buffer, there’s no way for the replying node to allocate the necessary additional
send buffers on the reply node and additional receive buffers on requesting node. The
requesting node has no way to anticipate a priori whether the replying node will need
additional buffers, because AM_ReplyXferM can be called from any request handler.

Complicated schemes involving a roundtrip to the requesting node within the
AM_ReplyXferM function violate the non-blocking semantics of the reply handler that is
running, and could potentially deadlock the system because they violate the strict request-
reply model and introduce a new buffer dependency.

While bulk transfer replies are outside the scope of what the HPAM protocol can handle,
it is possible to implement bulk transfer requests, where the requesting node initiates a
bulk transfer to or from the replying node. We have implemented the AM entry points
(AM_RequestXferM and AM_RequestXferAsyncM) that provide synchronous and

asynchronous bulk transfer “push” operations. They accept bulk transfers up to 128KB in
size, and perform fragmentation of the transfer buffer into as many 512-byte HPAM
buffers as necessary. The fragments travel independently and in parallel to the replying
node (any retransmissions necessary only retransmit the lost fragments), where they are
reassembled by the replying node into the endpoint’s memory segment at the offset
indicated by the argument to the request function. The arrival of each non-final fragment
does not trigger a user-level handler, but does generate a silent reply packet that informs
the requestor each fragment arrived and the instance can be freed. As required by the AM
spec, the request handler is run on the entire destination buffer once the final fragment
has arrived and been copied into place. In order to make this strategy work, each
fragment carries a count of the number of fragments involved in its bulk transfer, and a
bulk transfer sequence number which is used to disambiguate fragments from
independent concurrent bulk transfers so the replying node can properly update its view
on the progress of each transfer. Large transfers that require more fragments than the
number of free instances will block in a polling loop as fragments are sent across the
network until the last fragment gets placed into a send buffer. The AM spec also includes
a request function (AM_GetXferM) that performs a bulk transfer “pull” operation, which
can be implemented in a similar fashion (the prototype doesn’t currently implement
AM_GetXfer due to time constraints).

4 Design of UFXP
The UFXP layer is targeted at ISTORE [3],[6], which will be a cluster of small PC-like
bricks used to study highly available, maintainable, and adaptive storage-intensive
network services. Each ISTORE brick has hardware devoted to fault-tolerance and fault-
generation, including multiple Intel EtherExpress Pro 100 network interfaces.

These network interfaces are commodity parts, and therefore particularly inexpensive.
Each network interface can operate at 100Mbps, and each brick has a disk that can be
accessed at almost 40MBps, so each brick receives four EtherExpress Pro 100 (hereon
abbreviated FXP) network interfaces.

Normally, a brick will use all four of its network interfaces in parallel, using a transparent
fault-tolerant IP striping algorithm. This is ideal for TCP- and UDP-based applications,
which will automatically have access to 400Mbps of network bandwidth transparently
routed across four links. Their latency will also be improved, since there will be four
times fewer packets queued on each link. Further, if part of the network fails, the IP
striping system will automatically stop using the affected network interfaces. AMUDP,
which can run on top of UDP, will be able to take advantage of these features
automatically.

However, some applications are very latency-sensitive. Network protocol stacks are
traditionally implemented as part of an operating system kernel, but this adversely affects
the latencies of application network send and receive operations, because interactions
between applications and the kernel are typically slow.

Therefore a latency-sensitive application can achieve significantly greater performance if
interaction with the kernel is removed from the critical paths of sending and receiving
packets. However, in order to send and receive packets, the processor must directly

access the network interface registers. For security reasons, normally only the kernel can
access device registers; otherwise a malicious application could use a hardware device to
read and write arbitrary bytes of main memory.

Some network devices, such as Myrinet interfaces, are intelligent enough to prevent such
application behavior. Unfortunately this intelligence is extremely costly, and commodity
network devices such as the FXP do not implement it.

But if the application is trusted, the kernel can give the application just enough
permission so that, while the kernel will be removed from the critical path of sending and
receiving packets, it is also unlikely that the application will accidentally harm the
system. This is the goal of the UFXP layer.

The UFXP layer does not attempt to forward IP packets to the kernel; this would be very
inefficient. Instead, when the UFXP layer claims an Ethernet interface, the kernel IP
striping system stops using the interface. Because each ISTORE brick has four Ethernet
interfaces, the kernel can easily tolerate sacrificing one for a latency-sensitive
application.

The UFXP layer is fault-tolerant as well. When it detects that its Ethernet interface is no
longer functioning properly, it is able to cleanly flip to another of the four interfaces. The
UFXP layer sends an interface address change notification to the AMUDP layer, which in
turn is responsible for making the change transparent to the AM user.

The UFXP layer, approximately 3000 lines of code, is composed of a modified Linux
kernel driver and a user-level library. The kernel driver is based upon the original Linux
driver for the FXP. Much of the user library is actually derived from the kernel driver.

Most of the driver is unmodified, as it was only necessary to make a few additions.
Specifically, the driver maps FXP’s register set into the UFXP application’s virtual
address space. The driver also forwards network interrupts to the library via UNIX
signals. UNIX system calls do not allow non-root processes to pin memory, so the driver
provides this functionality as well. Finally, the driver must make sure that the kernel
always owns at least one functioning Ethernet interface.

To prevent malicious applications from directly accessing the FXP, the kernel driver is
accessible to user processes only through a special file in /dev, and so it is possible to
restrict access to it using UNIX file permissions.

One of the responsibilities of the user-level library is to use the memory-mapped device
registers to manage the transmission and reception of packets to/from the network. The
code for manipulating these registers is, of course, not at all portable. However, this is
actually the simpler portion of the library. One of the library’s more complicated
responsibilities is to manage packet buffers in the pinned memory space. Because of
inherent similarities in how PCI Ethernet chips manage packet buffers, this code is
actually fairly portable.

Consider first a standard non-PCI network card. To send a packet, a driver copies the
packet data from main memory to the NIC’s RAM, and then sends a transmit command
to the NIC. When a packet arrives, the NIC issues an interrupt, and the driver’s interrupt
handler copies the packet data from the NIC’s RAM to main memory. In both cases, the
driver communicates with the NIC even up to the point where the NIC has a copy of the

packet in its RAM. This is inefficient, because it forces the processor to be directly
involved in copying between main memory and the NIC’s memory. Also, the NIC must
interrupt the processor each time the NIC empties its transmit queue or fills its receive
queue, and unless the NIC has a lot of memory, this happens often.

PCI network cards exist to eliminate these inefficiencies, which become particularly
costly at speeds of 100Mbps and above, at which many thousands of full-length packets
can arrive in a second. When a driver needs to send a packet, it simply directs the NIC to
the location of the packet in main memory, and sends a transmit command. The NIC then
begins reading the packet from main memory through the PCI bus to its RAM. The NIC
can even start transmitting the packet on the network before it has read the whole packet
from main memory. Similarly, to handle receives efficiently, the NIC must know
beforehand where it can store a packet in main memory, so that the driver does not need
to guide the transfer.

To eliminate unnecessary interrupts, a PCI NIC should also allow packets to be queued in
main memory. For example, packets queued to be transmitted are typically arranged in a
linked list in main memory, and the NIC need not interrupt until it reaches the end of the
linked list.

Other features, such as being able to gather fragmented packets, are not crucial for
performance and therefore are not implemented in every PCI NIC. However, most PCI
NIC’s share the important buffering features. Ultimately this means that much of the
UFXP library is portable to other PCI Ethernet interfaces.

Regardless of the particular NIC, the root of the advantage of user-level networking, such
as that provided by UFXP, is that the kernel is not involved in the critical path of sending
and receiving packets. Normally bytes must be copied between user buffers and kernel
buffers and vice versa, but with UFXP, this is not necessary. For example, when running
on UFXP, AMUDP composes outgoing messages directly into the message’s final
transmission buffer.

Active messages are particularly able to take advantage of user-level networking, because
active message handlers operate directly on receive buffers, without first copying the
contents of the receive buffer to another user buffer. This means that zero-copy
networking can be achieved.

5 Performance results
One of the primary goals of active messages is to provide good network messaging
performance. Although AMUDP sacrifices some latency for portability, we still strive
for the best performance possible. We use a simple and fast static buffer allocation
algorithm, combined with the reliability protocol that is optimized for the common case
of no packet loss. Our static network depth helps to ensure that packets never get lost as a
result of congestion on the receiver.

The following section presents our initial performance results on AMUDP. The library is
still somewhat untuned, and we already know of several performance optimizations that
we’d like to make but were unable due to time constraints. For example, presetting some
of the unchanging members of the send buffers, ensuring favorable L2 cache alignment

of the packet buffers, cutting out some extra bytes in the packet headers, and other
general performance profiling and tuning.

5.1 Active Message size breakdown

The tables above provide a breakdown of the network packet utilization when running
AMUDP on the UFXP and UDP backends.

The minimum Ethernet packet size is 60 bytes, so ideally we could lower our minimum
packet size to under that size (since hardware latencies don’t get any lower past that
point, although the cost for packet checksum computation still decreases near linearly
with size). The UFXP header can be optimized further to remove 8 bytes of overhead (we
plan to do this in the near future).

5.2 Test Methodology
We benchmarked our system using four basic performance tests, described here.

The latency test is a simple 2-node ping application that sends small requests from one
node while the other polls. It uses the performance introspection API to measure the
latency between the send of each request message and the receive of the corresponding
reply message (which includes the time to run a trivial request handler on the replying
processor). We report the minimum and average latency times for long runs of ping
(10000), using varying network depth (since this parameter has an important impact on
performance). We expect the average latency to increase with larger network depths
because the receiving processor is kept busier.

The throughput test uses the same ping application runs, but reports the rate at which
requests are injected into the network. We expect the throughput to increase as network
depth increases (keeping the network and receiver exceedingly busier), and eventually
reach a saturation point where the hardware or software prevents further increase.

The bandwidth test measures the bulk transfer performance by sending large bulk transfer
request messages (8 messages, each 128 KB in length for a total of 1 MB) from one
processor to another and measuring the time required to perform the entire transfer at
different depths to calculate the bandwidth.

description size (bytes)
UFXP header 24
AM header 20

AM arguments 0...32
AM data 0…512

Total 42…586

Active Message size breakdown on UFXP

description size (bytes)
IP header 20

UDP header 8
AM header 20

AM arguments 0...32
AM data 0…512

Total 48…592
Active Message size breakdown on UDP

 Finally, the fault injection test measures the average latency of the small-message ping
application with increasing percentages of dropped packets to assess the performance
robustness in the face of transient faults.

5.3 UDP backend on Millennium
The Berkeley Millennium is a cluster of high-performance dual processor and quad
processor x86 SMP’s running Linux, and connected with a 100 MBit half-duplex
Ethernet LAN (they also share a high-performance Myrinet network not used in these
measurements – the kernel UDP driver uses the Ethernet network).

The charts above demonstrate the latency, throughput performance, bulk transfer
bandwidth and latency in the presence of faults achieved on the Millennium cluster using
AMUDP.

Millenium Ping Throughput

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

Network Depth
T

h
o

u
sa

n
d

s
o

f
R

eq
u

es
ts

 p
er

 S
ec

o
n

d

Millenium Ping Latency

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

Network Depth

L
at

en
cy

 (
m

ic
ro

se
co

n
d

s)

Minimum Latency

Average Latency

Millennium Bulk Transfer Bandwidth

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35

Network Depth

B
an

d
w

id
th

Ideal hardware bandwidth

Effect of Drop Rate on Average Ping Latency
on Millennium

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0% 5% 10% 15% 20% 25% 30%

Drop Rate

P
in

g
 L

at
en

cy
 (

m
ic

ro
se

co
n

d
s)

5.4 UFXP on IStore
The following graph shows the latency performance of the UFXP layer on IStore.

As of this writing, we still had an undiagnosed heisenbug in the UFXP driver causing
packet loss rates ranging from 1%-8%, which made it impossible to get accurate
throughput, bandwidth or fault injection numbers on that backend. The latency is
probably somewhat adversely affected as well.

6 Related Work

6.1 U-Net
The U-Net project [2], [4] was also concerned with fast user-level networking. U-Net
virtualizes a network interface to multiple untrusted applications. U-Net supports the
DEC DC21140 100Mbps Ethernet controller [18], which is very similar to the Intel
EtherExpress Pro 100. As opposed to UFXP, U-Net sacrifices some of its performance in
order to achieve protection.

6.2 HPAM
HPAM is an implementation of active messages–1 (AM-1) for a non-commodity, high-
performance NIC (the HP Medusa FDDI network card). Their underlying network
transport has similar delivery guarantees as UDP, so it was necessary for them to add
reliability in software as in AMUDP. They also implemented user-level access to the
network card, although they implemented a more complicated scheme that allows a
single network card to be multiplexed amongst concurrent trusted applications and the
kernel. The multiplexing works by using a special driver that runs as context-switch time
that saves/restores NIC state and routes packets accordingly that arrived while the wrong
application was running. We admired this design decision, but decided it was

ISTORE Ping Latency

0

50

100

150

200

250

300

0 2 4 6 8 10

Network Depth

L
at

en
cy

 (
m

ic
ro

se
co

n
d

s)

Minimum Latency

Average Latency

unnecessary and possibly detrimental to performance on IStore where multiple hardware
NIC’s are readily available. Other notable differences between HPAM and AMUDP is
that HPAM only implements AM-1 (leaving out much of the functionality in the AM-2
compliant implementation of AMUDP) and they provide no support for bulk transfers.

6.3 PVM-AM
PVM-AM [14] is an implementation of PVM that uses an active-message-like signaling
style to implement the communication layer that provides PVM functionality to a user
application. Notably, they also used the UDP protocol in the interests of portability,
however their implementation relies strongly on the use of UNIX signals to provide
message arrival notification, which seems to degrade their performance. Their “active
messages” are also significantly different from those in the AM-1/AM-2 specifications,
as the only “handler” which apparently ever runs consists of a concurrent library thread
that runs asynchronously with respect to the computation thread and buffers the message
in user memory where it remains until the user explicitly executes a blocking recv call.

6.4 Active Messages
The original active message specification “AM-1” [5], was released in an initial form in
1992, and had several restrictions on use that specifically targeted SPMD applications.
The updated “AM-2” specification [8], was released in 1996, and added support for more
general parallel computation models, modularity, multi-threading, and concurrent
endpoints and bundles.

6.4.1 Comments on the AM-2 specification
In implementing the AM-2 spec, several minor ambiguities and omissions were
discovered. Beyond simple typos in the API specification, there were some notable issues
which arose and we feel are useful to document for future developers of AM libraries and
applications. As far as we know, this is the first fully-independent implementation of
AM-2.

• AM functions return the constant AM_OK on success or one of several error
constants on error. However, the constants defined by the API don't provide enough
error codes to capture all the possible error situations that one may wish to
disambiguate, and the actual semantics of which functions may return which errors
and what they mean is entirely unspecified (every function description has a single
sentence that ends with “returns AM_OK if successful and AM_ERR_XXX
otherwise.”). We feel this is a serious omission that single-handedly makes it nearly
impossible to write robust, fault-tolerant applications for active messages, and makes
it less likely that AM applications will work without change on different AM
implementations.

• AM_Startup/AM_Terminate – the semantics of multiple calls is unclear (do they
nest?), especially with respect to which bundle and endpoint resources get released
when. This is especially important for applications with multiple, independent AM-
enabled software components (a design which is specifically encouraged by AM-2).

AMUDP solves this by keeping a counter of the number of open AM sessions
(incremented on successful AM_Startup, decremented on AM_Terminate) and
releasing all resources when the counter reaches zero, however this solution is
imperfect and may create unexpected results if some software component relies on
the AM_Terminate call to free its resources.

• It’s unclear where the implementation of AM_ReplyXXX should get the tag for the
requesting processor to use in the reply, since the requesting endpoint isn't necessarily
in the translation table. It seems like a violation of the admittedly weak security
mechanism of tags to include the requestor’s tag in the request (AMUDP refuses
requests whose endpoint have no entry in the translation table, making this issue
moot).

• It’s also unclear whether tag checks should take place on returned messages, and if so
where the returning processor gets the correct tag (AMUDP doesn’t check tags on
returned messages in order to avoid leaking the send buffer and prevent a returned-
message-bad-tag message from cycling endlessly in the network).

• The asynchronous entry points (AM_RequestXferAsyncM and AM_GetXferM) are
well intentioned, but poorly thought out. There are three important possible error
cases that can arise which in general require the application to reach in different
ways: the requested message is too large for the communication subsystem to handle
without blocking right now, the requested message is too large for the communication
subsystem to ever handle without blocking, and some other failure has occurred.
Because the spec omits the semantics of any error returns, these three cases are
indistinguishable to the application, making these entry points essentially useless for
robust applications. Finally, it’s unclear whether the asynchronous entry points are
allowed to poll (thereby potentially freeing some resources) because this may not
constitute returning “immediately” if some handlers block.

• The specification for the returned message handler indicates the AM library passes a
“structure” to the handler containing the original message arguments and message
token, but gives no details on the layout of this structure or how the application can
inspect it (making it essentially worthless to the application developer).

• AM_GetTranslationInuse returns the opposite of what one might expect - AM_OK
(zero) for in use, and AM_ERR_XXX (non-zero) for not in use.

7 Future Work

7.1 Titanium
One of our motivations for developing this implementation of active messages over UDP
was to provide a highly portable backend for the Titanium runtime system. In the near
future we hope to modify the active message backend of Titanium so it can be configured
to use AMUDP on platforms where no hardware-specific active message implementation
is available, thereby enabling Titanium applications to run on virtually any distributed
platform. We are also eager to see the performance of Titanium-based applications on
IStore using the UFXP driver.

7.2 NIC striping with user-level access
One possible future direction for the UFXP layer is to support the concurrent use of more
than one user-level NIC in a single application, for the purpose of reducing average
latency and increasing bandwidth by striping active messages across the network
interfaces. We considered implementing this feature, but were unable to do so due to
time constraints.

7.3 Clusters of clusters of nodes
One current research area is how to properly support multi-level parallel networking
environments, such as those which arise in clusters of symmetric multi-processors
(Clumps). In [7], the authors investigate ways to optimize Clumps that use AM between
boxes. We feel some of these ideas can be extended further to include clusters of Clumps.
For example, the Berkeley Millennium cluster consists of Myrinet-connected Clumps
sitting on a gigabit ethernet WAN with other similar Clumps. In order to run an active
message application across CLUMPS in such a configuration and make effective use of
the available hardware, one would need to send the active messages using different
underlying protocols based on the location of the source and destination. For example, in
this case an AM application could use a Myrinet-specific active message library for
messages to endpoints within its local cluster, and AMUDP for messages with
destinations in different clusters across the WAN. It may even be possible to provide an
AM “wrapper” library that provides multi-protocol AM delivery transparently to the
application (by maintaining an AM2-Myrinet endpoint and an AMUDP endpoint for each
wrapper endpoint and multiplexing/demultiplexing accordingly). The only potential
problems we see with such a scheme are AM library entry point naming conflicts
between the three libraries (which could probably be solved with some clever hackery),
and some thought would have to be given to the endpoint naming system and how to
infer the correct protocol to use based on the destination name.

7.4 Endpoint migration across nodes
Another area of future work is to provide a mechanism for the migration of endpoints
across nodes to tolerate node failure in fault-tolerant AM applications. The AM
specification provides enough data abstraction with respect to endpoint names to allow
transparent endpoint renaming, which is how we were able to implement transparent NIC
fail-over in UFXP. The same mechanism could be used to allow endpoint migration to
new nodes. For example, after a failure the replacement node could make a call telling
AM that it’s taking over all messages previously destined for a given, failed node –
messages destined for the failed node would then get automatically routed to the new
node with no application-level help from the other nodes.

8 Conclusions
AMUDP provides a highly portable and complete implementation of the AM-2
specification over UDP that should allow active message applications to get up and
running on new distributed hardware in no time. In addition AMUDP provides useful
API’s for platform-independent parallel SPMD job creation and low-level performance

introspection. The UDP backend achieves excellent bandwidth utilization and decent
latency performance on the Berkeley Millennium cluster, despite the fact that it’s using a
kernel-level UDP implementation and a commodity 100 Mbit Ethernet.

The alternate UFXP backend for AMUDP provides fully user-level, zero-copy/one-copy
active messaging for the Intel EtherExpress Pro 100 commodity NIC on Linux, with a
resulting improvement in latency performance. In addition, the UFXP layer enabled
AMUDP to provide totally transparent fault-tolerance to applications in the face of NIC
hardware failure.

9 References
[1] Active Messages home page.

http://now.cs.berkeley.edu/AM/active_messages.h
tml

[2] Basu A., Buch V., Vogels W., von Eicken T.. “U-
Net: A User-Level Network Interface for Parallel
and Distributed Computing”, Proceedings of the
15th ACM Symposium on Operating Systems
Principles (SOSP), Copper Mountain, Colorado,
December 3-6, 1995.

[3] Brown, A., D. Oppenheimer, K. Keeton, R.
Thomas, J. Kubiatowicz, and D.A. Patterson.
"ISTORE: Introspective Storage for Data-
Intensive Network Services." Proceedings of the
7th Workshop on Hot Topics in Operating
Systems (HotOS-VII), Rio Rico, Arizona, March
1999.

[4] von Eicken, T. Basu, A. Buch, V. and Vogels, W.
“U-Net: A User-Level Network Interface for
Parallel and Distributed Computing.” Proc. Of the
15th ACM Symposium on Operating Systems
Principles, Copper Mountain, Colorado,
December 1995.

[5] von Eicken, T. Culler D. Goldstein S. and
Schauser K. “Active Messages: a Mechanism for
Integrated Communication and Computation”, UC
Berkeley Technical Report UCB/CSD 92/#675,
March 1992.

[6] ISTORE home page.
http://iram.cs.berkeley.edu/istore/

[7] Lumetta, S. Mainwaring, A. and Culler, D.;
“Multi-Protocol Active Messages on a Cluster of
SMP’s”, Proceedings of Super Computing 1997.

[8] Mainwaring A. and Culler, D. “Active
Message Applications Programming Interface
and Communication Subsystem
Organization”, UC Berkeley Draft Technical
Report, September, 1996.

[9] Martin, Richard. “HPAM: An Active Message
Layer for a Network of HP Workstations”,
Hot Interconnects II, 1997.

[10] Message Passing Interface (MPI) Forum home
page. http://www.mpi-forum.org/

[11] Millennium home page.
http://www.millennium.berkeley.edu/

[12] Myrinet home page.
http://www.myricom.com/

[13] RFC 758, UDP Specification.
http://www.ietf.org/rfc/rfc0768.txt

[14] Subramaniam, K. Kothari, S. and Heller, D.
“A Communication Library Using Active
Messages to Improve Performance of
PVM”Iowa State University, June 1997.

[15] Split-C home page.
http://www.cs.berkeley.edu/Research/Projects/
parallel/castle/split-c/

[16] Titanium home page.
http://www.cs.berkeley.edu/Research/Projects/
titanium/

[17] Virtual Interface Architecture (VIA)
Specification, Version 1.0. December 16,
1997.

[18] Welsh, M. Basu, A. and von Eicken, T. “Low-
Latency Communication over Fast Ethernet”, ,
EuroPar '96, Lyon, France, August 1996.

[19] Yelick, Semenzato, Pike, Miyamoto, Liblit,
Krishnamurthy, Hilfinger, Graham, Gay, Colella,
Aiken, “Titanium: A High-Performance Java

Dialect”, ACM 1998 Workshop on Java for
High-Performance Network Computing,
Stanford, California, February 1998.

